, Volume 44, Issue 4, pp 305–320 | Cite as

Geological, petrologic, isotopic, and geochemical constraints of geodynamic models simulating formation of the archean tonalite-trondhjemite-granodiorite associations in ancient cratons

  • A. B. VrevskyEmail author
  • S. B. Lobach-Zhuchenko
  • V. P. Chekulaev
  • A. V. Kovalenko
  • N. A. Arestova


The geological setting, geochemistry, and Nd isotopic systematics of tonalite-trondhjemite-granodiortite (TTG) series in ancient cratons are considered. It is shown that the TTG series were formed from ∼4.2 to 2.6 Ga ago in the oldest continental cores; many TTG series do not reveal chronological links to greenstone belts. This follows from the evolution of the Slave Craton in the Canadian Shield, the Vodlozero Craton in the Baltic Shield, and the Pilbara and Yilgarn cratons in the Australian Shield, where greenstone associations postdated TTG series. As has been established at the Baltic Shield, the primary melts of the Mesoarchean TTG associations were formed at a shallower depth (P < 15 kbar) compared to the Neoarchean TTG, likely, due to the increasing thickness of the continental crust beneath the Baltic Shield over time.

The Nd isotopic composition of worldwide TTG associations indicates that most of them are characterized by a substantial time interval (>150 Ma) that separates the formation of the TTG melts from the age of the source involved in melting. Taking into account the calculated rate of cooling of the lithospheric plates, these data indicate that most Archean TTG series likely were not formed in the convergent subduction-related and accretionary geodynamic settings. The isotopic and geochemical data constrain compositions of the sources that produced Archean TTG series. Petrologic modeling of the formation conditions and Nd isotopic composition of the metabasalts in greenstone belts show that these rocks could not have been the source of TTG series. The most plausible isotopic and geochemical analogue of this source are the Archean amphibolites (ENd mafic rocks), which differ from the metabasalts of greenstone belts by their lower Sm/Nd ratio and enrichment in some lithophile elements. The available data suggest that the primary TTG melts were generated as products of melting of amphibolites and granulites forming the lower crust.


Lower Crust Detrital Zircon Mafic Rock Greenstone Belt Baltic Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Arestova, “Genesis of Archean Mafic Volcanics in the Baltic Shield and Possible Geodynamic Regimes of Their Formation Deduced from Geochemical Data,” in Proceedings of All-Russia Conference on Geodynamics, Magmatism, Sedimentation, and Minerageny of Northwestern Russia (Inst. Geol., Karelian Sci. Center, Russian Acad. Sci., Petrozavodsk, 2007), pp. 16–19 [in Russian].Google Scholar
  2. 2.
    N. A. Arestova, “Basalts of the Archean Greenstone Belts in the Baltic Shield: Sources and Geodynamic Formation Regimes Deduced from Geochemical Data,” Region. Geol. Metal., No. 36, 5–18 (2008).Google Scholar
  3. 3.
    G. V. Artemenko, V. V. Demedyuk, E. M. Bartnitsky, et al., “3400 Ma-a Minimal Age of Tonalite in the Vasil’kovka Site of the Orekhovo-Pavlograd Zone,” Geol. Zh., No. 2, 88–95 (2002).Google Scholar
  4. 4.
    G. V. Artemenko, S. B. Lobach-Zhuchenko, and E. V. Bibikova, “Geology, Age, and Composition of Archean Hornblendite in the Western Azov Region,” Geol. Zh. No. 2, 38 (2008).Google Scholar
  5. 5.
    S. L. Belyakov and A. E. Shlezinger, “The Nature of Seismic Boundaries in the Earth’s Continental Consolidated Crust,” Dokl. Akad. Nauk 350(4), 512–514 (1996) [Dokl. Earth Sci. 350 (7), 1111–1113 (1996)].Google Scholar
  6. 6.
    E. V. Bibikova, I. Williams, and V. Compston, “Geochronological Study of Accessory Zircons from the Oldest Rocks in the USSR on a Ion Microprobe,” Geokhimiya 27(5), 691–701 (1989).Google Scholar
  7. 7.
    E. V. Bibikova, S. B. Lobach-Zhuchenko, G. V. Artemenko, et al., “Late Archean Magmatic Complexes of the Azov Terrane, Ukrainian Shield: Geological Setting, Isotopic Age, and Sources of Material,” Petrologiya 16(3), 227–247 (2008) [Petrology 16 (3), 211–231 (2008)].Google Scholar
  8. 8.
    O. A. Bogatikov and L. P. Zonenshain, “Magmatism and Geodynamics,” in Lectures at the 27th IGC (Nauka, Moscow, 1984), Vol. 9, pp. 3–14.Google Scholar
  9. 9.
    V. R. Vetrin, “Composition and Structure of the Lower Crust of the Belomorian Mobile Belt, Baltic Shield,” Petrologiya 14(4), 415–438 (2006) [Petrology 14 (4), 390–412 (2006)].Google Scholar
  10. 10.
    A. B. Vrevsky, Doctoral Dissertation in Geology and Mineralogy (St. Petersburg, 2000).Google Scholar
  11. 11.
    V. N. Kozhevnikov, N. G. Berezhnaya, S. L. Presnyakov, et al., “Geochronology (SHRIMP II) of Zircons from Archean Lithotectonic Associations of Karelian Greenstone Belts: Implications for Stratigraphic and Geodynamic Reconstructions,” Stratigr. Geol. Korrelyatsiya 14(3), 19–41 (2006) [Stratigr. Geol. Correlation 14 (3), 240–259 (2006)].Google Scholar
  12. 12.
    V. N. Kozhevnikov, V. V. Makarikhin, Yu. I. Systra, et al., “Mature Terrigenous Sedimentary Rocks: Their Role in Recreation of Structure and Geological History of Early Precambrian Cratons,” in Proceedings of All-Russia Lithologic Conference (GEOS, Moscow, 2006), pp. 98–102 [in Russian].Google Scholar
  13. 13.
    M. Yu. Koreshkova, L. K. Levsky, and V. V. Ivanikov, “Petrology of a Lower Crustal Xenolith Suite from Dikes and Explosion Pipes of the Kandalaksha Graben,” Petrologiya 9(1), 89–106 (2001) [Petrology 9 (1), 79–96 (2001)].Google Scholar
  14. 14.
    V. A. Kostin, Early Precambrian Geodynamic and Metallogeny in the Eastern Baltic Shield: The Role of Fixed Mantle Energy Pulses (Inst. Geol., Karelian Sci. Center, Russian Acad. Sci., Petrozavodsk, 2006) [in Russian].Google Scholar
  15. 15.
    S. B. Lobach-Zhuchenko, “Archean Tonalite-Plagiogranite Series of Karelia: Geological Types and Petrogenesis,” in Lectures at the 27th IGC (Nauka, Moscow, 1984), Vol. 9, pp. 141–148.Google Scholar
  16. 16.
    S. B. Lobach-Zhuchenko, N. A. Arestova, A. V. Kovalenko, and I. N. Krylov, “Fenno-Karelian Granite-Greenstone Region. Archean. The Vodlozero Domain,” in Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitsky (Nauka, St. Petersburg, 2005), pp. 288–339 [in Russian].Google Scholar
  17. 17.
    S. B. Lobach-Zhuchenko, N. A. Arestova, R. I. Mil’kevich, et al., “Stratigraphy of the Kostomuksha Belt in Karelia (Upper Archean) as Inferred from Geochronological, Geochemical, and Isotopic Data,” Stratigr. Geol. Korrelyatsiya 8(4), 319–326 (2000) [Stratigr. Geol. Correlation 8 (4), 319–326 (2000)].Google Scholar
  18. 18.
    S. B. Lobach-Zhuchenko, N. A. Arestova, V. P. Chekulaev, et al., “Evolution of the South Vygozero Greenstone Belt, Karelia,” Petrologiya 7(2), 156–173 (1999) [Petrology 7 (2), 160–176 (1999)].Google Scholar
  19. 19.
    S. B. Lobach-Zhuchenko, Yu. S. Egorova, A. V. Yurchenko, et al., “Biotite-Garnet Gneiss as a Result of Structural and Metamorphic Reworking of Older Tonalite: Composition of Minerals, Characterization and Age of the Process, the Vasil’kovka Site, Orekhovo-Pavlograd Suture Zone,” Mineral. Zh., No. 3, 1–13 (2009).Google Scholar
  20. 20.
    S. B. Lobach-Zhuchenko, V. P. Chekulaev, N. A. Arestova, et al., “Archean Terranes in Karelia: Geological and Isotopic-Geochemical Evidence,” Geotektonika 34(6), 26–42 (2000) [Geotectonics 34 (6), 452–466 (2000)].Google Scholar
  21. 21.
    K. I. Lokhov, T. E. Saltykova, I. N. Kapitonov, et al., “Geochemistry of Hf Isotopes in Zircons and Nd in Rocks as a Tool for Correct Interpretation of U-Pb Geochronological Information: A Case of Mafic Rocks in the Basement of the Kursk Granite-Greenstone Domain of the Voronezh Crystalline Massif,” in Proceedings of the 4th Russian Conference on Isotopic Systems in Studies of Magmatism, Metamorphism, Sedimentation, and Ore Formation (Inst. Precambrian Geol. Geochron., St. Petersburg, 2009), Vol. 1, pp. 340–343 [in Russian].Google Scholar
  22. 22.
    M. V. Luchitskaya, Plagiogranites of the Koryakia and Kamchatka (GEOS, Moscow, 2001) [in Russian].Google Scholar
  23. 23.
    V. A. Matrenichev and A. B. Vrevsky, “Isotopic-Geochemical Model for the Upper Mantle Evolution of the Baltic Shield,” Geokhimiya 42(1), 104–110 (2004) [Geochem. Int. 42 (1), 86–91 (2004)].Google Scholar
  24. 24.
    E. V. Pavlovsky, “Specific Style of Tectonic Evolution of the Earth’s Crust in Early Precambrian,” Tr. Vost.-Sibir. Geol. Inst. SO AN SSSR 5, 77–108 (1962).Google Scholar
  25. 25.
    Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitsky (Nauka, St. Petersburg, 2005) [in Russian].Google Scholar
  26. 26.
    I. D. Ryabchikov, “Main Components of Geochemical Reservoirs of the Silicate Earth,” Geokhimiya 44(1), 14–32 (2006) [Geochem. Int. 44 (1), 11–18 (2006)].Google Scholar
  27. 27.
    I. D. Ryabchikov, O. A. Bogatikov, and A. D. Babansky, “Physicochemical Problems of the Origin of Calc-Alkaline Magmas,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 8, 5–17 (1978).Google Scholar
  28. 28.
    S. A. Sergeev, E. V. Bibikova, S. B. Lobach-Zhuchenko, and D. I. Matukov, “Age of the Magmatic and Metamorphic Processes in the Vodlozero Complex, Baltic Shield: An Ion Microprobe (SHRIMP II) U-Th-Pb Isotopic Study of Zircons,” Geokhimiya 45(2), 229–236 (2007) [Geochem. Int. 45 (2), 198–205 (2007)].Google Scholar
  29. 29.
    S. A. Sergeev, S. B. Lobach-Zhuchenko, N. A. Arestova, et al., “Age and Geochemistry of Zircons from the Ancient Granitoids of the Vyg River, Southeastern Karelia,” Geokhimiya 46(6), 1–13 (2008) [Geochem. Int. 46 (6), 595–607 (2008)].Google Scholar
  30. 30.
    A. I. Slabunov, “Late Archean Keret Granite-Greenstone System in Karelia,” Geotektonika 27(5), 61–74 (1993).Google Scholar
  31. 31.
    O. M. Turkina, “Modeling Geochemical Types of Tonalite-Trondhjemite Melts and Their Natural Equivalents,” Geokhimiya 38(7), 704–717 (2000) [Geochem. Int. 38 (7), 640–651 (2000)].Google Scholar
  32. 32.
    A. A. Fedotova, E. V. Bibikova, and S. G. Simagin, “Ion-Microprobe Zircon Geochemistry as an Indicator of Mineral Genesis in Geochronological Studies,” Geokhimiya 46(9), 980–997 (2008) [Geochem. Int. 46 (9), 912–927 (2008)].Google Scholar
  33. 33.
    V. P. Chekulaev, N. A. Arestova, N. G. Berezhnaya, and S. L. Presnyakov, “New Data on the Age of the Oldest Tonalite-Trondhjemite Association in the Baltic Shield,” Stratigr. Geol. Korrelyatsiya 17(2), 126–130 (2009) [Stratigr. Geol. Correlation 17 (2), 230–234 (2009)].Google Scholar
  34. 34.
    V. P. Chekulaev, “Geology and Composition of Archean TTG and Plagiogranites in Phanerozoic Geodynamic Setting: Similarity and Difference,” in Proceedings of Scientific Conference on Archean Granite-Greenstone Systems and Their Younger Analogues (Inst. Geol., Karelian Sci. Center, Russian Acad. Sci., Petrozavodsk, 2009), pp. 176–179 [in Russian].Google Scholar
  35. 35.
    V. P. Chupin and V. R. Vetrin, “Melt and Fluid Inclusions in Zircon and Rock-Forming Minerals from Plagioclase Gneisses of the Archean Complex Penetrated by the Kola Superdeep Borehole,” Geokhimiya 43(2), 206–212 (2005) [Geochem. Int. 43 (2), 177–183 (2005)].Google Scholar
  36. 36.
    N. P. Shcherbak, G. V. Artemenko, I. M. Lesnaya, and A. N. Ponomarenko, Early Precambrian Geochronology of the Ukrainian Shield (Naukova Dumka, Kiev, 2005) [in Russian].Google Scholar
  37. 37.
    A. A. Shchipansky, Subduction and Mantle-Plume Processes in Geodynamics of Archean Greenstone Belts (LKI, Moscow, 2008) [in Russian].Google Scholar
  38. 38.
    F. Albarede and M. Brouxel, “The Sm/Nd Secular Evolution of the Continental Crust and the Depleted Mantle,” Earth Planet. Sci. Lett. 82, 25–35 (1987).CrossRefGoogle Scholar
  39. 39.
    R. L. Armstrong, “A Model for the Evolution of Strontium and Lead Isotopes in a Dynamic Earth,” Rev. Geophys. 6, 175–199 (1968).CrossRefGoogle Scholar
  40. 40.
    M. P. Atherton and N. Petford, “Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust,” Nature 362, 144–146 (1993).CrossRefGoogle Scholar
  41. 41.
    V. C. Bennett, “Compositional Evolution of the Mantle, in Treatise on Geochemistry, Ed. by D. Holland and K. K. Turekian (Elsevier, Amsterdam, 2003), Vol. 2, pp. 493–519.Google Scholar
  42. 42.
    V. C. Bennett, A. D. Brandob, and A. P. Nutman, “Coupled 142Nd-143Nd Isotopic Evidence for Hadean Mantle Dynamics,” Science 318, 1907–1910 (2007).CrossRefGoogle Scholar
  43. 43.
    M. J. Bickle, E. G. Nisbet, and A. Martin, “Archean Greenstone Belts Are not Oceanic Crust,” J. Geol. 102, 121–138 (1994).CrossRefGoogle Scholar
  44. 44.
    W. Bleeker, “The Late Archean Record: a Puzzle in ca. 35 Pieces,” Lithos 71, 99–134 (2007).CrossRefGoogle Scholar
  45. 45.
    W. Bleeker, W. J. Davis, J. W. F. Ketchum, et al., “Tectonic Evolution of the Slave Craton, Canada,” in AGSO. Geoscience Australia (2001), pp. 288–291.Google Scholar
  46. 46.
    W. Bleeker, J. W. F. Ketchum, and W. J. Davis, “The Central Slave Basement Complex: Part II. Age and Tectonic Significance of High-Strain Zones Along the Basement-Cover Contact,” Can. J. Earth Sci. 36(7), 1111–1130 (1999).CrossRefGoogle Scholar
  47. 47.
    J. Blichert-Toft and F. Albarede, “Hafnium Isotopes in Jack Hills Zircons and the Formation of the Hadean Crust,” Earth Planet. Sci. Lett. 265, 686–702 (2008).CrossRefGoogle Scholar
  48. 48.
    S. A. Bowring and I. S. Williams, “Priscoan (4.00–4.03 Ga) Orthogneiss from Northwestern Canada,” Contrib. Mineral. Petrol. 134, 3–16 (1999).CrossRefGoogle Scholar
  49. 49.
    I. H. Campbell, “Constraints on Continental Growth Models from Nd/U Ratios in the 3.5 Ga Barberton and Other Archaean Basalt-Komatiite Suites,” Am. J. Sci. 303, 319–351 (2003).CrossRefGoogle Scholar
  50. 50.
    W. Compston and A. Kröner, “Multriple Zircons Growth within Early Archaean Tonalitic Gneiss from the Ancient Gneiss Complex, Swaziland,” Earth Planet. Sci. Lett. 87, 13–28 (1988).CrossRefGoogle Scholar
  51. 51.
    W. Compston, I. S. Williams, I. H. Campbell, and J. J. Gresham, “Zircon Xenocrysts from the Cambalda Volcanics: Age Constraints and Direct Evidence for Older Continental Crust Below Cambalda-Norseman Greenstones,” Earth Planet. Sci. Lett. 76, 299–301 (1986).CrossRefGoogle Scholar
  52. 52.
    K. C. Condie, “Origin and Early Growth Rate of Continents,” Precambr. Res. 32(4), 261–278 (1986).CrossRefGoogle Scholar
  53. 53.
    K. C. Condie, “Origin of the Earth’s Crust,” Paleogeogr. Paleoclimatol. Paleoecol. (Global Planet Change Sect.) 75, 57–81 (1989).CrossRefGoogle Scholar
  54. 54.
    K. C. Condie, “Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?” Earth Planet. Sci. Lett. 163, 97–108 (1998).CrossRefGoogle Scholar
  55. 55.
    K. C. Condie, “Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust,” Lithos 46, 95–101 (1999).CrossRefGoogle Scholar
  56. 56.
    K.C. Condie, “High Field Strenght Element Ratios in Archean basalts: a Window to Evolving Sources of Mantle Plumes?” Lithos 79, 491–504 (2005).CrossRefGoogle Scholar
  57. 57.
    K. C. Condie, “TTGs and Adakites: Are They Both Slab Melts?,” Lithos 80, 33–44 (2005).CrossRefGoogle Scholar
  58. 58.
    B. L. Cousens, “Geochemistry of the Archean Kam Group, Yellowknife Greenstone Belt, Slave Province, Canada,” J. Geol. 108, 181–197 (2000).CrossRefGoogle Scholar
  59. 59.
    M. J. de Wit, “Archean Greenstone Belts Do Contain Fragments of Ophiolites,” in Precambrian Ophiolites and Related Rocks, Ed. by T. M. Kusky (2004), pp. 599–614.Google Scholar
  60. 60.
    M. S. Drummond and M. J. Defant, “A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth Via Slab Melting: Archaean to Modern Comparisons,” J. Geophys. Res. 95, 21503–21521 (1990).CrossRefGoogle Scholar
  61. 61.
    Earth’s Oldest Rocks, Ed. by M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett (Elsevier, Amsterdam, 2007).Google Scholar
  62. 62.
    N. L. Green and D. L. Harry, “On the Relationships Between Subducted Slabage and Arc Basalt Petrogenesis, Cascadia Subduction System, North America,” Earth Planet. Sci. Lett. 171, 367–381 (1999).CrossRefGoogle Scholar
  63. 63.
    M. Gurnis and G. F. Davies, “Apparent Episodic Crustal Growth Arising from a Smoothy Evolving Mantle,” Geology 14, 396–399 (1986).CrossRefGoogle Scholar
  64. 64.
    W. B. Hamilton, “An Alternative Earth,” GSA Today 13(11), 4–12 (2003).CrossRefGoogle Scholar
  65. 65.
    C. J. Hawkesworth and A. I. S. Kemp, “Evolution of the Continental Crust,” Nature 443(19), 811–817 (2006).CrossRefGoogle Scholar
  66. 66.
    P. Henry, R. K. Stevenson, Y. Larbi, and C. Gariepy, “Nd Isotopic Evidence for Early to Late Archean (3.4-2.7 Ga) Crustal Growth in the Western Superior Province (Ontario, Canada),” Tectonophysics 322, 135–151 (2000).CrossRefGoogle Scholar
  67. 67.
    D. R. Hunter, F. Barker, and H. T. Millard, “The Geochemical Nature of the Archaean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: A Preliminary Study,” Precambr. Res. 7(2), 105–128 (1978).CrossRefGoogle Scholar
  68. 68.
    T. Iizuka, T. Komiya, and S. Maruyama, “The Early Archean Acasta Gneiss Complex: Geological, Geochronological, and Isotopic Studies and Implications for Early Crustal Evolution,” in Earth’s Oldest Rocks, Ed. by M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett (Elsevier, Amsterdam, 2007), pp. 127–148.CrossRefGoogle Scholar
  69. 69.
    P. D. Kempton, H. Downes, E. V. Sharkov, et al., “Petrology and Geochemistry of Xenoliths from the Northern Baltic Shield: Evidence for Partial Melting and Metasomatism in the Lower Crust Beneath an Archaean Terrane,” Lithos 36, 157–184 (1995).CrossRefGoogle Scholar
  70. 70.
    J. D. Kramers, “An Open-System Fractional Crystallization Model for Very Early Continental Crust Formation,” Precambr. Res. 38, 281–295 (1988).CrossRefGoogle Scholar
  71. 71.
    A. Kröner and W. Compston, “Ion Microprobe Ages of Zircons from Early Archaean Granite Pebbles and Greywacke, Barberton Greenstone Belt, Southern Africa,” Precambr. Res. 38, 367–380 (1988).CrossRefGoogle Scholar
  72. 72.
    A. Kröner and W. Compston, “Archaean Tonalitic Gneiss of Finnish Lapland Revisisted: Zircon Ionprobe Ages,” Contrib. Mineral. Petrol. 104, 348–350 (1990).CrossRefGoogle Scholar
  73. 73.
    A. Kröner, E. Hegner, J. I. Wendt, and G. R. Byerly, “The Oldest Part of the Barberton Granite-Greenstone Terrain, South Africa: Evidence for Crustal Formation between 3.5 and 3.7 Ga,” Precambr. Res. 78(1/3), 105–124 (1996).CrossRefGoogle Scholar
  74. 74.
    Y.-S. Liu, S. Gao, S.-Y. Jin, et al., “Geochemistry of Lower Crustal Xenoliths from Neogene Hannuoba Basalt, North China Craton: Implication for Petrogenesis and Lower Crustal Composition,” Geochim. Cosmochim. Acta 65(15), 2589–2604 (2001).CrossRefGoogle Scholar
  75. 75.
    S. B. Lobach-Zhuchenko, A. V. Kovalenko, I. N. Krylov, et al., “Geochemistry and Petrology of the Ancient Vygozero Granitoids, Southeastern Karelia,” Geochem. Int. 38, 584–599 (2000).Google Scholar
  76. 76.
    S. B. Lobach-Zhuchenko, V. P. Chekulaev, S. A. Sergeev, et al., “Archaean Rocks from Southeastern Karelia (Karelian Granite-Greenstone Terrane),” Precambr. Res. 62, 375–397 (1993).CrossRefGoogle Scholar
  77. 77.
    M. V. Luchitskaya, O. L. Morozov, and S. A. Palandzhyan, “Plagiogranite Magmatism in the Mesozoic Island-Arc Structure of the Pekulney Ridge, Chukotka Peninsula, NE Russia,” Lithos 79, 251–269 (2005).CrossRefGoogle Scholar
  78. 78.
    H. Martin, “The Adakitic Magmas: Modern Analogues of Archaean Granitoids,” Lithos 46, 411–429 (1999).CrossRefGoogle Scholar
  79. 79.
    H. Martin, R. H. Smith, R. Rapp, et al., “An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution,” Lithos 79, 1–24 (2005).CrossRefGoogle Scholar
  80. 80.
    S. M. McLennan and S. R. Taylor, “Geochemical Constrains on the Growth of the Continental Crust,” J. Geol. 90, 347–361 (1982).CrossRefGoogle Scholar
  81. 81.
    S. Moorbath, “Age and Isotopic Evidence for Evolution of Continental Crust,” Phil. Trans. Roy. Soc. London, Ser. A 288, 401–412 (1978).CrossRefGoogle Scholar
  82. 82.
    J.-F. Moyen, G. Stevens, A. F. M. Kisters, and R.W. Belgher, “TTG Plutons of the Barberton Granitoid-Greenstone Terrane, South Africa,” in Earth’s Oldest Rocks, Ed. by M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett (Elsevier, Amsterdam, 2007), pp. 607–667.CrossRefGoogle Scholar
  83. 83.
    T. Mutanen and H. Huhma, “The 3.5 Ga Siurua Trondhjemite Gneiss in the Archaean Pudasjarvi Granulite Belt, Northern Finland,” Bull. Geol. Soc. Finl. 75(1/2), 51–68 (2003).Google Scholar
  84. 84.
    A. P. Nutman, C. R. Friend, S. L. L. Barker, and V. R. McGregor, “Inventory and Assessment of Palaeoarchaean Gneiss Terranes and Detrital Zircons in Southern West Greenland,” Precambr. Res. 135, 281–314 (2004).CrossRefGoogle Scholar
  85. 85.
    J. O’Neil, R. W. Carlson, D. Francis, and R. K. Stevenson, “Neodymium-142 Evidence for Hadean Mafic Crust,” Science 321, 1828–1839 (2008).CrossRefGoogle Scholar
  86. 86.
    J. Paavola, “A Communication of the U-Pb and K-Ar Age Relations of the Archaean Basement in the Lapinlachti-Varpaisjarvi Areas, Central Finland,” Geol. Surv. Finl. Bull. 339, 7–15 (1986).Google Scholar
  87. 87.
    M. Petermann and M. M. Hirschmann, “Anhydrous Partial Melting Experiments on MORB-Like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2–3 Gpa,” J. Petrol. 44(12), 2173–2201 (2003).CrossRefGoogle Scholar
  88. 88.
    N. Petford and K. Gallagher, “Partial Melting of Mafic (Amphibolitic) Lower Crust by Periodic Influx of Basaltic Magma,” Earth Planet. Sci. Lett. 93, 483–499 (2001).CrossRefGoogle Scholar
  89. 89.
    I. S. Puchtel, A. U. Hofmann, W. Mezger, et al., “Oceanic Plateau Model for Crustal Evolution in the Archaean: A Case Study from the Kostomuksha Greenstone Belt, NW Baltic Shield,” Earth Planet. Sci. Lett. 155, 57–74 (1998).CrossRefGoogle Scholar
  90. 90.
    . P. Rapp, N. Shimisu, M. D. Norman, and G. S. Applegate, “Reaction Between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa,” Chem. Geol. 160, 335–356 (1999).CrossRefGoogle Scholar
  91. 91.
    R. P. Rapp, N. Shimisu, and M. D. Norman, “Growth of Early Continental Crust by Partial Melting of Eclogite,” Nature 425, 605–609 (2003).CrossRefGoogle Scholar
  92. 92.
    R. P. Rapp and E. B. Watson, “Dehydration Melting of Metabasalt at 8–32 Kbar: Implication for Continental Growth and Crust-Mantle Recycling,” J. Petrol. 86(4), 891–931 (1995).Google Scholar
  93. 93.
    R. P. Rapp, E. B. Watson, and C. F. Miller, “Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites,” Precambr. Res. 51, 1–25 (1991).CrossRefGoogle Scholar
  94. 94.
    J. R. Ridley and J. D. Kramers, “The Evolution and Tectonic Consequence of a Tonalitic Magma Layer within Archean Continents,” Can. J. Earth Sci. 27, 219–228 (1990).CrossRefGoogle Scholar
  95. 95.
    R. L. Rudnick and S. Gao, “Composition of Continental Crust,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Amsterdam, 2003), pp. 1–61.Google Scholar
  96. 96.
    I. Seghedi, A.-V. Bojar, H. Downes, et al., “Generation of Normal and Adakite-Like Calc-Alkaline Magmas in a Nonsubduction Environments: A Sr-O-H Isotopic Study of the Apuseny Mountains, Neogene Magmatic Province, Romania,” Chem. Geol. 245(1/2), 70–88 (2007).CrossRefGoogle Scholar
  97. 97.
    R. H. Smithies, “The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series Is not an Analogue of Cenozoic Adakite,” Earth Planet. Sci. Lett. 182, 115–125 (2000).CrossRefGoogle Scholar
  98. 98.
    W. Springer and H. A. Seck, “Partial Fusion of Basic Granulites at 5 to 15 kbar: Implications for the Origin of TTG Magmas,” Contrib. Mineral. Petrol. 127, 30–45 (1997).CrossRefGoogle Scholar
  99. 99.
    A. Steenfelt, A. A. Garde, and J.-F. Moyen, “Mantle Wedge Involvement in the Petrogenesis of Archaean Grey Gneisses in West Greenland,” Lithos 79, 207–228 (2005).CrossRefGoogle Scholar
  100. 100.
    M. Stein and A. W. Hofmann, “Mantle Plumes and Episodic Crustal Growth,” Nature 372, 63–68 (1994).CrossRefGoogle Scholar
  101. 101.
    D. J. Thorkelson and K. Breitsprecher, “Partial Melting of Slab Window Margins: Genesis of Adacitic and Non-Adakitic Magmas,” Lithos 79, 25–41 (2005).CrossRefGoogle Scholar
  102. 102.
    K. Y. Tomlinson, J. M. Stott, J. A. Percival, and D. Stone, “Basement Terrane Correlations and Crustal Recycling in the Western Superior Province: Nd Isotopic Character of Granitoid and Felsic Volcanic Rocks in the Wabigoon Subprovince, N. Ontario, Canada,” Precambr. Res. 132, 245–274 (2004).CrossRefGoogle Scholar
  103. 103.
    G. Topus and R. Altherr, “Post-Collisional Plutonism with Adakite-Like Signatures: the Eocene Saraycik Granodiorite (Eastern Pontides, Turkey),” Contrib. Mineral. Petrol. 150, 441–455 (2005).CrossRefGoogle Scholar
  104. 104.
    M. J. Van Kranendonk, “Re-Assessment of the Thrust-Accretion Hypothesis for the Southwestern Barberton Greenstone Belt, South Africa,” in HPP-05, the 33rd IGC (Norway, 2008).Google Scholar
  105. 105.
    M. J. Van Kranendonk, R. H. Smities, A. H. Hickman, and D. C. Champion, “Paleoarchean Development of a Continental Nucleus: the East Pilbara Terrane of the Pilbara Craton, Western Australia,” in Earth’s Oldest Rocks, Ed. by M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett (Elsevier, Amsterdam, 2007), pp. 307–338 (2007).CrossRefGoogle Scholar
  106. 106.
    K. T. Winter, “An Experimentally Based Model for the Origin of Tonalitic and Trondhjemitic Melts,” Chem. Geol. 127, 43–59 (1996).CrossRefGoogle Scholar
  107. 107.
    S. Wyche, “Evidence of Pre-3100 Ma Crust in the Yoanmi and South West Terranes, and Eastern Goldfields Superterrane of the Yilgarn Craton,” in Earth’s Oldest Rocks, Ed. by M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett (Elsevier, Amsterdam, 2007), pp. 113–124 (2007).CrossRefGoogle Scholar
  108. 108.
    D. Zamora, Fusion de la croûte océanique subductée: approche expérimentale et géochimique (Clermont-Ferrand Université, Thesis Université Blaise Pascal, 2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. B. Vrevsky
    • 1
    Email author
  • S. B. Lobach-Zhuchenko
    • 1
  • V. P. Chekulaev
    • 1
  • A. V. Kovalenko
    • 1
  • N. A. Arestova
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations