, Volume 41, Issue 6, pp 487–500 | Cite as

Structure and composition of the oceanic lithosphere created at different spreading rates

  • S. A. PalandzhyanEmail author


The specific features of the oceanic lithosphere (the petrography, the mineral composition, and the petrochemistry of igneous rocks and restites) that indicate its formation at different spreading rates, from the extremely slow to fast, are considered. This evidence may be used for solution of the inverse problem of estimating, at least qualitatively, the rate of paleospreading from the structure and composition of rocks pertaining to the ophiolitic association. The use of petrochemical data as the criteria of paleospreading rate is limited. The anomalous composition and structure of the oceanic crust may be due to factors unrelated to the spreading rate. The well-studied cases of ophiolites interpreted as fragments of the ancient oceanic lithosphere formed under conditions of fast, slow, and extremely slow spreading rates are discussed. It is concluded tentatively that the fast spreading is typical of the ophiolites obducted on passive margins (the Periarabian, Uralian, and Appalachian-Caledonian belts) as fragments of ensimatic suprasubduction basins formed at the final stages of the evolution of paleooceans (Tethys and Iapetus). Ophiolites as products of slow spreading are commonly localized in accretionary (subduction-related) orogens at the present-day and older active continental margins.


Partial Melting Spreading Rate Oceanic Lithosphere Backarc Basin Spreading Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. I. Galushkin, E. P. Dubinin, and A. I. Shemenda, “Thermal Structure of Axial Zone of Mid-Ocean Ridges. Article 1. Origin and Evolution of the Axial Magma Chamber,” Fiz. Zemli 30(5), 11–19 (1994).Google Scholar
  2. 2.
    G. G. Dmitrenko, A. G. Mochalov, and S. A. Palandzhyan, Petrology and Platinum Ore Potential of Lhertzolite Massifs in the Koryak Highland (SVKNII, Magadan, 1990) [in Russian].Google Scholar
  3. 3.
    L. V. Dmitriev, S. A. Silant’ev, A. A. Plechova, and S. Yu. Sokolov, “Comparison of Basaltic Magmatism under Conditions of Different Spreading Rates with Reference to the Mid-Atlantic Ridge and the East Pacific Rise,” Ross. Zh. Nauk Zemle 2(3), 207–226 (2000).Google Scholar
  4. 4.
    N. L. Dobretsov, V. A. Simonov, and V. Yu. Kolobov, “Origin of the Oceanic Lithosphere in the Slow-Spreading Ridges in the Central Atlantic,” Petrologiya 2(4), 363–378 (1994).Google Scholar
  5. 5.
    E. P. Dubinin and A. A. Sveshnikov, “Evolution of the Lithosphere of Paleospreading Ridges (Results of Mathematical Modeling),” Geotektonika 34(3), 72–90 (2000) [Geotectonics 34 (3), 234–250 (2000)].Google Scholar
  6. 6.
    E. P. Dubinin and S. A. Ushakov, Oceanic Rifting (Geos, Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    L. P. Zonenshain and M. I. Kuz’min, Paleogeodynamics (Nauka, Moscow, 1993) [in Russian].Google Scholar
  8. 8.
    L. I. Lobkovsky, A. M. Nikishin, and V. E. Khain, Current Problems of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian].Google Scholar
  9. 9.
    V. V. Matveenkov, “Lava Morphology and Basalt Petrology in Mid-Ocean Ridges with Different Spreading Rates,” Geotektonika 19(4), 51–63 (1983).Google Scholar
  10. 10.
    V. V. Matveenkov, A. I. Al’mukhamedov, and V. V. Kostoglodov, “Variations of Chemical Composition of Low-K Tholeiites from Rift Zones with Different Spreading Rates,” Okeanologiya 33, 78–81 (1988).Google Scholar
  11. 11.
    Oceans and Continents, Book 1: Oceans, Ed. by S. A. Ushakov (Moscow State Univ., Moscow, 2003) [in Russian].Google Scholar
  12. 12.
    S. A. Palandzhyan, “Typification of Mantle Peridotites by Geodynamic Formation Settings,” (SVKNII, Magadan, 1992) [in Russian].Google Scholar
  13. 13.
    A. A. Peive, Structural and Lithological Heterogeneities, Magmatism, and Geodynamics of the Atlantic Ocean (Nauchnyi Mir, Moscow, 2002) [in Russian].Google Scholar
  14. 14.
    Yu. M. Pushcharovsky, “The Main Tectonic Asymmetry of the Earth: Pacific and Indo-Atlantic Segments and Their Interrelations,” in Tectonic and Geodynamic Phenomena (Nauka, Moscow, 1997), pp. 8–24 [in Russian].Google Scholar
  15. 15.
    Yu. M. Pushcharovsky, “Geodynamic Instability of Oceanic Spreading in the Atlantic Ocean,” Geotektonika 37(4), 3–13 (2003) [Geotectonics 37 (4), 261–270 (2003)].Google Scholar
  16. 16.
    Yu. M. Pushcharovsky and E. N. Melankholina, Tectonic Evolution of the Earth. The Pacific Ocean and Its Framework (Nauka, Moscow, 1992) [in Russian].Google Scholar
  17. 17.
    Yu. M. Pushcharovsky and S. V. Ruzhentsev, “Spreading in the Evolution of the Oceanic Structural Units,” Dokl. Akad. Nauk SSSR 280(1), 182–185 (1985).Google Scholar
  18. 18.
    G. N. Savelieva, “Structure of the Mantle-Crust Transition in Recent and Ancient Spreading Centers (Central Atlantic and Polar Urals),” Geotektonika 42(4), 3–19 (2004).Google Scholar
  19. 19.
    N. M. Sushchevskaya, G. A. Cherkashov, B. V. Baranov, et al., “Tholeiitic Magmatism under Conditions of Ultraslow Spreading: An Example from the Knipovich Ridge, North Atlantic,” Geokhimiya 43(3), 254–274 (2005) [Geochem. Int. 43 (3), 222–241 (2005)].Google Scholar
  20. 20.
    V. E. Khain, Tectonics of Continents and Oceans (2000) (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  21. 21.
    V. E. Khain and M. G. Lomize, Tectonics and Principles of Geodynamics (KDU, Moscow, 2005) [in Russian].Google Scholar
  22. 22.
    A. Ya. Sharas’kin, Tectonics and Magmatism of Marginal Seas in Connection with Problems of Crustal and Mantle Evolution (Nauka, Moscow, 1992) [in Russian].Google Scholar
  23. 23.
    S. Allerton and F. J. Vine, “Spreading Evolution of the Troodos Ophiolite, Cyprus,” Geology 19(6), 637–640 (1991).CrossRefGoogle Scholar
  24. 24.
    J.-M. Auzende, D. Bideau, E. Bonatti, et al., “Direct Observation of a Section through Slow-Spreading Oceanic Crust,” Nature 337(6208), 726–729 (1989).CrossRefGoogle Scholar
  25. 25.
    M. G. Barth, P. R. D. Mason, G. R. Davies, et al., “Geochemistry of the Othris Ophiolite, Greece: Evidence for Refertilization?,” J. Petrol. 44(10), 1759–1785 (2003).CrossRefGoogle Scholar
  26. 26.
    E. Bonatti, “Subcontinental Mantle Exposed in the Atlantic Ocean on St. Paul-Peter Islets,” Nature 345(6278), 800–802 (1990).CrossRefGoogle Scholar
  27. 27.
    E. Bonatti, D. Brunelli, P. Fabretti, et al., “Steady State Creation of Lithosphere at Cold Spots in the Mid-Ocean Ridges,” Geology 29(11), 979–982 (2001).CrossRefGoogle Scholar
  28. 28.
    E. Bonatti, M. Seyler, and N. Sushevskaya, “A Cold Suboceanic Mantle Belt at the Earth’s Equator,” Science 261, 315–320 (1993).CrossRefGoogle Scholar
  29. 29.
    F. Boudier and A. Nicolas, “Harzburgite and Lherzolite Subtypes in Ophiolitic and Oceanic Environments,” Earth Planet. Sci. Lett. 76, 84–92 1985.CrossRefGoogle Scholar
  30. 30.
    J. W. Bown and R. S. White, “Variation with Spreading Rate of Oceanic Crustal Thickness and Geochemistry,” Earth Planet. Sci. Lett. 121(3/4), 435–449 (1994).CrossRefGoogle Scholar
  31. 31.
    M. Cannat, “Emplacement of Mantle Rocks in the Seafloor at the Mid-Ocean Ridges,” J. Geophys. Res. 98(B3), 4163–4172 (1993).Google Scholar
  32. 32.
    M. Cannat and C. Lecuyer, “Ephemeral Magma Chambers in the Trinity Peridotite, Northern California,” Tectonophysics 186(3–4), 313–328 (1991).CrossRefGoogle Scholar
  33. 33.
    M. Cannat, C. Mevel, M. Maia, et al., “Thin Crust, Ultramafic Exposures, and Rugged Faulting Patterns at the Mid-Atlantic Ridge,” Geology 23(1), 49–52 (1995).CrossRefGoogle Scholar
  34. 34.
    Y. J. Chen, “Ocean Crustal Thickness Versus Spreading Rate,” Geophys. Res. Lett. 19(8), 753–756 (1992).Google Scholar
  35. 35.
    O. Dauteuil and J.-P. Brun, “Oblique Rifting in a Slow-Spreading Ridge,” Nature 361, 145–148 (1993).CrossRefGoogle Scholar
  36. 36.
    M. F. J. Flower, “Accumulation of Calcic Plagioclase in Oceanic-Ridge Tholeiite: A Indicator of Spreading Rate?,” Nature 287(5782), 530–532 (1980).CrossRefGoogle Scholar
  37. 37.
    M. F. J. Flower, “Spreading Rate Parameters in Ocean Crust: Analogue for Ophiolite?,” in Ophiolites and Oceanic Lithosphere, Ed. by I. G. Gass, S. J. Lippard, and A. W. Shelton (Geol. Soc. London Spec. Publ., 1984), No. 13, pp. 25–40.Google Scholar
  38. 38.
    J. Girardeau and J.-C. C. Mercier, “Petrology and Texture of the Ultramafic Rocks of the Xigaze Ophiolite (Tibet): Constraints for Mantle Structure beneath Slow-Spreading Ridges,” Tectonophysics 147(1–2), 33–58 (1988).CrossRefGoogle Scholar
  39. 39.
    A. M. Goodliffe, B. Taylor, F. Martinez, et al., “Synchronous Reorientation of the Woodlarc Basin Spreading Center,” Earth Planet. Sci. Lett. 146(1–2), 233–242 (1997).CrossRefGoogle Scholar
  40. 40.
    K. M. Haase, N. A. Stronik, R. Hekinian, and P. Stoffers, “Nd-Depleted Andesites from the Pacific-Antarctic Rise as Analogs for Early Continental Crust,” Geology 33(12), 921–924 (2005).CrossRefGoogle Scholar
  41. 41.
    G. D. Harper, “The Josephine Ophiolite, Northwestern California,” Bull. Geol. Soc. Am. 95, 1009–1026 (1984).CrossRefGoogle Scholar
  42. 42.
    G. D. Harper, “Tectonic Implications of Boninite, Arc Tholeiite, and MORB Magma Types in the Josephine Ophiolite, California-Oregon,” in Ophiolites in Earth History, Ed. by Y. Dilek and P. T. Robinson (Geol. Soc. London Spec. Publ., 2003), Vol. 218, pp. 207–230.Google Scholar
  43. 43.
    R. Harris, “Geodynamic Patterns of Ophiolites and Marginal Basins in the Indonesian and New Guinea Regions,” in Ophiolites in Earth History, Ed. by Y. Dilek and P. T. Robinson (Geol. Soc. London Spec. Publ., 2003), Vol. 218, pp. 481–505.Google Scholar
  44. 44.
    R. M. Haymon, D. J. Fornari, M. H. Edwards, et al., “Hydrothermal Vent Distribution along the East Pacific Rise Crest (9°09′-54′N) and Its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridges,” Earth Planet. Sci. Lett. 104(2/4), 513–534 (1991).CrossRefGoogle Scholar
  45. 45.
    R. Hebert, F. Huot, Ch. Wang, and Z. Liu, “Yarlung Zangbo Ophiolites (Southern Tibet): Geodynamic Implications from the Mineral Record,” in Ophiolites in Earth History, Ed. by Y. Dilek and P. T. Robinson (Geol. Soc. London Spec. Publ., 2003), Vol. 218, pp. 165–190.Google Scholar
  46. 46.
    J. R. Heirtzler, G. O. Dickson, E. M. Herron, et al., “Marine Magnetic Anomalies, Geomagnetic Field Reversals, and Motions of the Ocean Floor and Continents,” J. Geophys. Res. 73(6), 2119–2136 (1968).CrossRefGoogle Scholar
  47. 47.
    E. Hellebrand, J. E. Snow, and R. Muhe, “Mantle Melting beneath Gakkel Ridge (Arctic Ocean): Abyssal Peridotite Spinel Compositions,” Chem. Geol. 182, 227–235 (2002).CrossRefGoogle Scholar
  48. 48.
    C. Herzberg, “Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle,” J. Petrol. 45(12), 2389–2405 (2004).CrossRefGoogle Scholar
  49. 49.
    M. Isezaki and K. Okino, “Magnetic Anomalies in the Philippine Sea,” in Geology and Geophysics of the Philippine Sea, Ed. by H. Tokuyama et al. (Terrapub, Tokyo, 1995), pp. 39–49.Google Scholar
  50. 50.
    A. Kadarusman, S. Miyashita, Sh. Maruyama, et al., “Petrology, Geochemistry and Paleogeographic Reconstruction of the East Sulawesi Ophiolite, Indonesia,” Tectonophysics 392, 55–83 (2004).CrossRefGoogle Scholar
  51. 51.
    E. S. Kappel and W. B. E. Ryan, “Volcanic Episodicity and a Non-Steady State Rift Valley along Northeast Pacific Spreading Centers. Evidence from Sea MARC1,” J. Geophys. Res. 91, 13925–13940 (1986).Google Scholar
  52. 52.
    P. Kelemen, E. Kikawa, D. Jay Miller, and the Leg 210 Scientific Party, “ODP Leg 209 Drills into Mantle Peridotite along the Mid-Atlantic Ridge from 14° N to 16° N,” JOIDES J. 30(1), 14–19 (2004).Google Scholar
  53. 53.
    E. M. Klein and Ch. H. Langmuir, “Global Correlations of Ocean Ridge Basalt Chemistry with Axial Depth and Crustal Thickness,” J. Geophys. Res. 92(B8), 8089–8115 (1987).Google Scholar
  54. 54.
    Y. Lagabrielle and M. Cannat, “Alpine Jurassic Ophiolites Resemble the Modern Central Atlantic Basement,” Geology 18, 319–322 (1990).CrossRefGoogle Scholar
  55. 55.
    G. S. Lichtman and J.-P. Eissen, “Time and Space Constraints on the Evolution of Medium-Rate Spreading Centers,” Geology 11(10), 592–595 (1983).CrossRefGoogle Scholar
  56. 56.
    C. Meyzen, M. J. Toplis, E. Hunter, et al., “Unique MORB Compositions from the Southwest Indian Ridge,” Nature 421, 731–733 (2003).CrossRefGoogle Scholar
  57. 57.
    Ch. Monnier, J. Girardeau, R. C. Maury, and J. Cotten, “Back-Arc Basin Origin for the East Sulawesi Ophiolite (Eastern Indonesia),” Geology 23(9), 851–854 (1996).CrossRefGoogle Scholar
  58. 58.
    J. M. Morel and R. Hekinian, “Compositional Variations of Volcanics along Segments of Recent Spreading Ridges,” Contrib. Mineral. Petrol. 72(4), 425–436 (1980).CrossRefGoogle Scholar
  59. 59.
    J. C. Mutter and J. A. Karson, “Structural Processes at Slow-Spreading Ridges,” Science 257, 627–634 (1992).CrossRefGoogle Scholar
  60. 60.
    A. Nicolas, Structure of Ophiolites and Dynamics of Oceanic Lithosphere (Kluwer, Dordrecht, 1989).Google Scholar
  61. 61.
    A. Nicolas, F. Boudier, and A. Meshi, “Slow Spreading Accretion and Mantle Denudation in the Mirdita Ophiolite (Albania),” J. Geophys. Res. 104(B7), 15155–15167 (1999).CrossRefGoogle Scholar
  62. 62.
    Y. Niu and R. Batiza, “Chemical Variation Trends at Fast and Slow Spreading Mid-Ocean Ridges,” J. Geophys. Res. 98(B5), 7881–7902 (1993).Google Scholar
  63. 63.
    Y. Niu, K. D. Collerson, R. Batiza, et al., “Origin of Enriched-Type Mid-Ocean Ridge Basalt at Ridges Far from Mantle Plumes: The East Pacific Rise at 11°20′N,” J. Geophys. Res. 104(B4), 7076–7087 (1999).CrossRefGoogle Scholar
  64. 64.
    Y. Niu and R. Hekinian, “Spreading-Rate Dependence of the Extent of Mantle Melting beneath Ocean Ridges,” Nature 385, 326–329 (1997).CrossRefGoogle Scholar
  65. 65.
    Ch.-H. Park, K. Tamaki, and K. Kobayashi, “Age-Depth Correlation of the Philippine Sea Back-Arc Basins and Other Marginal Basins in the World,” Tectonophysics 181(1–4), 351–371 (1990).Google Scholar
  66. 66.
    D. Robson and J. R. Cann, “A Geochemical Model of Mid-Ocean Ridge Magma Chambers,” Earth Planet. Sci. Lett. 60, 93–104 (1982).CrossRefGoogle Scholar
  67. 67.
    N. H. Sleep and G. A. Barth, “The Nature of Oceanic Lower Crust and Shallow Mantle Emplaced at Low Spreading Rates,” Tectonophysics 279(1/4), 181–191 (1997).CrossRefGoogle Scholar
  68. 68.
    B. Taylor, “A Geophysical Survey of the Woodlark-Solomon Region,” in Marine Geology, Geophysics, and Geochemistry of the Woodlark Basin, Solomon Islands, Ed. by B. Taylor and N. F. Exon (Circum-Pacific Council for Energy and Mineral Resources, Houston, 1987), Vol. 7, pp. 25–48.Google Scholar
  69. 69.
    B. Taylor and F. Martinez, “Back-Arc Basalt Systematics,” Earth Planet. Sci. Lett. 210, 481–497 (2003).Google Scholar
  70. 70.
    P. Tregoning, “Plate Kinematics in the Western Pacific Derived from Geodetic Observations,” J. Geophys. Res. 29(B107), 2001JB000406 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations