Geomagnetism and Aeronomy

, Volume 59, Issue 5, pp 577–586 | Cite as

Modeling of the Auroral Hiss Propagation from the Source Region to the Ground

  • O. M. Lebed’Email author
  • Yu. V. Fedorenko
  • J. Manninen
  • N. G. Kleimenova
  • A. S. Nikitenko


A numerical model of auroral hiss propagation from the region of its generation to the ground surface is developed for the interpretation of results from ground-based high-latitudinal VLF observations. The model includes modules describing the statistical properties of electrostatic whistler waves generated due to Cerenkov resonance at the heights of 6000–20 000 km, the propagation of these waves in the magnetosphere to the region of upper ionosphere (under 5000 km), which is filled with small-scale irregularities of electron concentration, the scattering of electrostatic waves from these irregularities into the transition cone, and further propagation of the waves through the lower ionosphere down to the ground surface. The modeling results agree with the observations.



  1. 1.
    Banks, P., Collision frequencies and energy transfer electrons, Planet. Space Sci., 1966, vol. 14, no. 11, pp. 1085–1103.CrossRefGoogle Scholar
  2. 2.
    Beghin, C., Rauch, J.L., and Bosqued, J.M., Electrostatic plasma waves and HF auroral hiss generated at low altitude, J. Geophys. Res., 1989, vol. 94, pp. 1359–1378.CrossRefGoogle Scholar
  3. 3.
    Bell, T.F. and Ngo, H.D., Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities, J. Geophys. Res., 1990, vol. 95, pp. 149–172.CrossRefGoogle Scholar
  4. 4.
    Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1980.Google Scholar
  5. 5.
    Budden, K.G., The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge: Cambridge University Press, 1985.CrossRefGoogle Scholar
  6. 6.
    Davies, A., Lester, M., and Robinson, T.R., Deriving the normalized ion-neutral collision frequency from EISCAT observations, Ann. Geophys., 1997, vol. 15, no. 12, pp. 1557–1569.CrossRefGoogle Scholar
  7. 7.
    Fedorenko, Y., Tereshchenko, E., Pilgaev, S., Grigoryev, V., and Blagoveshchenskaya, N., Polarization of ELF waves generated during “beating-wave” heating experiment near cutoff frequency of the Earth–ionosphere waveguide, Radio Sci., 2014, vol. 49, pp. 1254–1264. CrossRefGoogle Scholar
  8. 8.
    Gallagher, D.L. and Craven, P.D., Global core plasma model, J. Geophys. Res., 2000, vol. 105, pp. 18819–18833.CrossRefGoogle Scholar
  9. 9.
    Horne, R.B., Ray tracing of electrostatic waves in a hot plasma and its application to the generation of terrestrial myriametric radiation, Geophys. Res. Lett., 1988, vol. 15, no. 6, pp. 553–556.CrossRefGoogle Scholar
  10. 10.
    Kimura, I., Effects of ions on whistler-mode ray tracing, Radio Sci., 1966, vol. 1, no. 3, pp. 269–284.CrossRefGoogle Scholar
  11. 11.
    Kleimenova, N.G., Manninen, J., Gromova, L.I., Gromov, S.V., and Turunen, T., Bursts of auroral-hiss VLF emissions on the Earth’s surface at L ~ 5.5 and geomagnetic disturbances, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 3, pp. 272–280.Google Scholar
  12. 12.
    Kuzichev, I.V., On whistler mode wave scattering from density irregularities in the upper ionosphere, J. Geophys. Res., 2012, vol. 117, A06325.CrossRefGoogle Scholar
  13. 13.
    LaBelle, J. and Treumann, R., Auroral radio emissions, 1. Hisses, roars, and bursts, Space Sci. Rev., 2002, vol. 101, no. 3, pp. 295–440.CrossRefGoogle Scholar
  14. 14.
    Lehtinen, N.G. and Inan, U.S., Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet, J. Geophys. Res., 2008, vol. 113, A06301.CrossRefGoogle Scholar
  15. 15.
    Lehtinen, N.G. and Inan, U.S., Full-wave modeling of transionospheric propagation of VLF waves, Geophys. Res. Lett., 2009, vol. 36, L03104.CrossRefGoogle Scholar
  16. 16.
    Maggs, J.E., Coherent generation of VLF hiss, J. Geophys. Res., 1976, vol. 81, pp. 1707–1724.CrossRefGoogle Scholar
  17. 17.
    Makita, K., VLF-LF hiss emissions associated with aurora, Mem. Natl. Inst. Polar Res. Tokyo: Ser. A, 1979, no. 16, pp. 1–126.Google Scholar
  18. 18.
    Manninen, J., Turunen, T., Kleimenova, N., Rycroft, M., Gromova, L., and Sirviö, I., Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland, Environ. Res. Lett., 2016, vol. 11, no. 12, 124006. CrossRefGoogle Scholar
  19. 19.
    Mosier, S.R. and Gurnett, D.A., Observed correlation between auroral and VLF emissions, J. Geophys. Res., 1972, vol. 77, no. 7, pp. 1137–1145.CrossRefGoogle Scholar
  20. 20.
    Munteanu, C., Negrea, C., Echim, M., and Mursula, K., Effect of data gaps: Comparison of different spectral analysis methods, Ann. Geophys., 2016, vol. 34, pp. 437–449. CrossRefGoogle Scholar
  21. 21.
    Murzaeva, N.N., Regular noise background of VLF emission, Nizkochastotnye volny i signaly vo vneshnei ionosfere (Low-frequency waves and signals in the outer ionosphere), Kol’skii filial AN SSSR, 1974, pp. 20–23.Google Scholar
  22. 22.
    Nikitenko, A.S., Lebed’, O.M., and Fedorenko, Yu.V., The first results of localization of natural ELF/VLF emissions at high latitudes according to ground-based observation data, Trudy 41-go Seminara “Fizika avroral’nykh yavlenii” (Proceedings of the 41th Seminar “Physics of Auroral Phenomena”), Apatity, 2018, pp. 61–65.Google Scholar
  23. 23.
    Ozaki, M., Yagitani, S., Nagano, I., Hata, Y., Yamagishi, H., Sato, N., and Kadokura, A., Localization of VLF ionospheric exit point by comparison of multipoint ground-based observation with full-wave analysis, Polar Sci., 2008, vol. 2, pp. 237–249.CrossRefGoogle Scholar
  24. 24.
    Pulliam, D.M., Anderson, H.R., Stamnes, K., and Rees, M.H., Auroral electron acceleration and atmospheric interaction (1) rocket-born observation and (2) scattering calculation, J. Geophys. Res., 1981, vol. 86, pp. 2397–2404.CrossRefGoogle Scholar
  25. 25.
    Sazhin, S.S., Bullough, K., and Hayakawa, M., Auroral hiss: A review, Planet. Space Sci., 1993, vol. 41, no. 2, pp. 153–166.CrossRefGoogle Scholar
  26. 26.
    Shklyar, D., Chum, J., and Jirícek, F., Characteristic properties of Nu whistlers as inferred from observations and numerical modelling, Ann. Geophys., 2004, vol. 22, no. 10, pp. 3589–3606.CrossRefGoogle Scholar
  27. 27.
    Smith, A.J. and Jenkins, P.J., A survey of natural electromagnetic noise in the frequency range F = 1–10 kHz at Halley station, Antarctica: 1. Radio atmospherics from lightning, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, pp. 263–277.CrossRefGoogle Scholar
  28. 28.
    Sonwalkar, V.S., Magnetospheric LF-, VLF-, and ELF-waves, Handbook of Atmospheric Electrodynamics, Boca Raton, Fla: CRC, 1995, pp. 407–462.Google Scholar
  29. 29.
    Sonwalkar, V.S. and Harikumar, J., An explanation of ground observations of auroral hiss: Role of density depletions and meter-scale irregularities, J. Geophys. Res., 2000, vol. 105, pp. 18867–18883.CrossRefGoogle Scholar
  30. 30.
    Spasojevic, M., Statistics of auroral hiss and relationship to auroral boundaries and upward current regions, J. Geophys. Res.: Space Phys., 2016, vol. 121, pp. 7547–7560. CrossRefGoogle Scholar
  31. 31.
    Srivastava, R.N., VLF hiss, visual aurora and geomagnetic activity, Planet. Space Sci., 1976, vol. 24, pp. 375–379.CrossRefGoogle Scholar
  32. 32.
    Stix, T.N., Waves in Plasmas, New York: Springer, 1992.Google Scholar
  33. 33.
    Tsyganenko, N.A., Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 1995, vol. 100, pp. 5599–5612.CrossRefGoogle Scholar
  34. 34.
    Vershinin, E.F., On the regular noise background of continuous ULF emission in the upper atmosphere, Zemnoi magnetizm, polyarnye siyaniya i ul’tranizkochastotnoe izluchenie (Terrestrial Magnetism, Polar Auroras, and ULF Emission), vol. 1, Irkutsk: SibIZMIR, 1966, pp. 44–49.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. M. Lebed’
    • 1
    Email author
  • Yu. V. Fedorenko
    • 1
  • J. Manninen
    • 2
  • N. G. Kleimenova
    • 3
  • A. S. Nikitenko
    • 1
  1. 1.Polar Geophysical InstituteApatityRussia
  2. 2.Sodankylä Geophysical ObservatorySodankyläFinland
  3. 3.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations