Geomagnetism and Aeronomy

, Volume 59, Issue 5, pp 587–592 | Cite as

Estimate of Variations in the Parameters of the Midlatitude Lower Ionosphere Caused by the Solar Flare of September 10, 2017

  • B. G. GavrilovEmail author
  • V. M. Ermak
  • Yu. V. PokladEmail author
  • I. A. RyakhovskiiEmail author


Changes in the state of the D and E ionospheric regions lead to variations in the amplitude-phase characteristics of VLF radio signals. The existing theoretical and empirical models of the propagation of low-frequency electromagnetic waves qualitatively describe the relative variations in the parameters of the lower ionosphere associated with strong heliogeophysical disturbances; however, these models do not allow estimation of the absolute value and distribution of the electron concentration. We used the measurement data for the amplitude-phase characteristics of VLF radio signals with different frequencies propagating along two closely spaced paths. This made it possible not only to quantify the parameters of the D region of the ionosphere on a spatial scale of thousands of kilometers during the powerful solar flare of September 10, 2017 but also to restore the electron concentration profile before the onset of X-ray radiation.



The study was performed as part of the state assignment АААА-А17-117112350014-8.


  1. 1.
    Basak, T. and Chakrabarti, S.K., Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares, Astrophys. Space Sci., 2013, vol. 348, pp. 315–326. CrossRefGoogle Scholar
  2. 2.
    Clilverd, M.A., Seppala, A., Rodger, C.J., Thomson, N.R., Verronen, P.T., Turunen, E., Ulich, T., Lichtenberger, J., and Steinbach, P., Modeling polar ionospheric effects during the October–November 2003 solar proton events, Radio Sci., 2006, vol. 41, RS2001. CrossRefGoogle Scholar
  3. 3.
    Ferguson, J.A., Ionospheric model validation at VLF and LF, Radio Sci., 1995, vol. 30, no. 3, pp. 775–782.CrossRefGoogle Scholar
  4. 4.
    Ferguson, J.A., Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0, Technical document 3030, San Diego: Space and Naval Warfare Systems Center, 1998.Google Scholar
  5. 5.
    Friedrich, M., Pock, C., and Torkar, K., FIRI-2018, an updated empirical model of the lower ionosphere, J. Geophys. Res.: Space, 2018, vol. 123, pp. 6737–6751.CrossRefGoogle Scholar
  6. 6.
    Gavrilov, B.G., Zetser, Yu.I., Ryakhovskii, I.A., Poklad, Yu.V., and Ermak, V.M., Remote sensing of ELF/VLF radiation induced in experiments on artificial modification of the ionosphere, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 4, pp. 450–456.Google Scholar
  7. 7.
    Gavrilov, B.G., Zetser, Yu.I., Lyakhov, A.N., Poklad, Yu.V., and Ryakhovskii, I.A., Correlated disturbances of the upper and lower ionosphere from synchronous measurements of parameters of GNSS signals and VLF radio signals, Cosmic Res., 2019, vol. 57, no. 1, pp. 36–43.CrossRefGoogle Scholar
  8. 8.
    Hayakawa, M., Molchanov, O.A., Ondoh, T., and Kawai, E., The precursory signature effect of the Kobe earthquake on VLF subionospheric signals, J. Commun. Res. Lab., 1996, vol. 43, pp. 169–180.Google Scholar
  9. 9.
    Klobuchar, J.A. and Whitney, H.E., Ionospheric electron content measurements during a solar eclipse, J. Geophys. Res., 1965, vol. 70, pp. 1254–1257.CrossRefGoogle Scholar
  10. 10.
    Kozlov, S.I., Lyakhov, A.N., and Bekker, S.Z., Key principles of constructing probabilistic statistical ionosphere models for the radiowave propagation problems, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 6, pp. 750–762.Google Scholar
  11. 11.
    Mitra, A.P., Ionospheric Effects of Solar Flares, Dordrecht: D. Reidel, 1974.CrossRefGoogle Scholar
  12. 12.
    Peter, W.B., Chevalier, M.W., and Inan, U.S., Perturbations of midlatitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms, J. Geophys. Res., 2006, vol. 111, A03301. CrossRefGoogle Scholar
  13. 13.
    Rodger, C.J., Red sprites, upward lightning, and VLF perturbations, Rev. Geophys., 1999, vol. 37, pp. 317–336.CrossRefGoogle Scholar
  14. 14.
    Singh, A.K., Singh, R., Veenadhari, B., and Singh, A.K., Response of low latitude D-region ionosphere to the total solar eclipse of 22 July 2009 deduced from ELF/VLF analysis, Adv. Space Res., 2012, vol. 50, pp. 1352–1361. CrossRefGoogle Scholar
  15. 15.
    Tanaka, Y.T., Raulin, J.P., Bertoni, F.C.P., Fagundes, P.R., Chau, J., Schuch, N.J., Hobara, Y., Terasawa, T., and Takahashi, T., First very low frequency detection of short repeated bursts from magnetar SGR J1550-5418, Astrophys. J. Lett., 2010, vol. 721, no. 1, pp. 24–27.CrossRefGoogle Scholar
  16. 16.
    Thomson, N.R., Daytime tropical D region parameters from short path VLF phase and amplitude, J. Geophys. Res., 2010, vol. 115, A09313. CrossRefGoogle Scholar
  17. 17.
    Thomson, N.R., Rodger, C.J., and Dowden, R.L., Ionosphere gives size of greatest solar flare, Geophys. Res. Lett., 2004, vol. 31, L06803. CrossRefGoogle Scholar
  18. 18.
    Thomson, N.R., Rodger, C.J., and Clilverd, M.A., Large solar flares and their ionospheric D region enhancements, J. Geophys. Res., 2005, vol. 110, A06306. CrossRefGoogle Scholar
  19. 19.
    Thomson, N.R., Rodger, C.J., and Clilverd, M.A., Daytime D region parameters from long-path VLF phase and amplitude, J. Geophys. Res., 2011, vol. 116, A11305. CrossRefGoogle Scholar
  20. 20.
    Wait, J.R. and Spies, K.P., Characteristics of the Earth–ionosphere waveguide for VLF radio waves, NBS Technical Note 300, 1964.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Geosphere Dynamics, Russian Academy of SciencesMoscowRussia

Personalised recommendations