Geomagnetism and Aeronomy

, Volume 59, Issue 2, pp 234–241 | Cite as

Synchronous Variations in the Atmospheric Pressure and Electric Field during the Passage of the Solar Terminator

  • Yu. S. RybnovEmail author
  • S. P. SolovievEmail author


The paper presents the field observation data on variations in the pressure and electric field intensity in the near-surface atmospheric layer during the passage of the morning solar terminator in several regions of the Russian Federation: on Kamchatka, Kola Peninsula, and in Vladimir oblast. Analysis of the data shows that the pressure and electric field intensity undergo synchronous variations during the passage of the solar terminator. An isolated series of events has a mutual correlation coefficient of variations in the pressure and electric field intensity in the period of passage of the solar terminator that exceeded 0.9 with a subsequent decrease to the background values of ≈0.2–0.3.



The study was performed by government assignment, subject 0146-2019-0009.


  1. 1.
    Afraimovich, E.L., First GPS-TEC evidence for the wave structure excited by the solar terminator, Earth Planets Space, 2008, no. 60, pp. 895–900.Google Scholar
  2. 2.
    Afraimovich, E.L., Edemskiy, I.K., Voeykov, S.V., Yasyukevich, Yu.V., and Zhivetiev, I.V., The first GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator, Ann. Geophys., 2009, vol. 27, pp. 1521–1525.CrossRefGoogle Scholar
  3. 3.
    Afraimovich, E.L., Edemsky, I.K., Voeykov, S.V., Yasyukevich, Yu.V., and Zhivetiev, I.V., MHD nature of ionospheric wave packets generated by the solar terminator, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, no. 1, pp. 79–95.Google Scholar
  4. 4.
    Antonova, V.P., Guseinov, Sh.Sh., Drobzhev, V.I., et al., Integrated experimental study of atmospheric waves generated by solar terminator, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1988, vol. 24, no. 2, pp. 134–143.Google Scholar
  5. 5.
    Antonova, V.P., Dungenbaeva, K.E., Zalizovskii, A.V., Inchin, A.S., Kryukov, S.V., Somsikov, V.M., and Yampol’skii, Yu.M., Difference between the spectra of acoustic gravity waves in daytime and nighttime hours due to nonequilibrium effects in the atmosphere, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 1, pp. 101–109.Google Scholar
  6. 6.
    Borchevkina, O.P., Karpov, I.V., Karpov, A.I., and Il’minskaya, A.V., Acoustic–gravity waves in observations of tropospheric and ionospheric parameters over Kaliningrad, in Proc. XXXIX Annual Seminar Physics of Auroral Phenomena, Apatity, 2016, pp. 108–111. 2016.Google Scholar
  7. 7.
    Chalmers, J.A., Atmospheric Electricity, Oxford: Pergamon, 1967; Leningrad: Gidrometeoizdat, 1973.Google Scholar
  8. 8.
    Fritt, D.C. and Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 2003, vol. 41, pp. 1–64.Google Scholar
  9. 9.
    Khrgian, A.Kh., Fizika atmosfery (Atmospheric Physics), vol. 1, Leningrad: Gidrometeoizdat, 1978.Google Scholar
  10. 10.
    Kozlov, D.A., Leonovich, A.S., and Edemskii, I.K., Generation of slow magnetosonic oscillations by solar terminator in the Earth’s plasmasphere, Soln.-Zemnaya Fiz., 2012, no. 20, pp. 63–71.Google Scholar
  11. 11.
    Kuznetsov, V.V. and Cherneva, N.V., Study of Forbush decreases and effects of the terminator in the atmospheric electric field at the Paratunka observatory (Kamchatka), Vestn. Kamchatskoi Reg. Assots. Uchebno-Nauchnyi Tsentr, Nauki Zemle,2008, vol. 11, no. 1, pp. 89–97.Google Scholar
  12. 12.
    Laštovička, J., Forcing of the ionosphere by waves from below, J. Atmos. Solar. Terr. Phys., 2006, vol. 68, pp. 479–497.CrossRefGoogle Scholar
  13. 13.
    Lizunov, G.V. and Fedorenko, A.K., Atmospheric gravity waves generation by solar terminator according to “Atmosphere Explorer-E” satellite data, Radio Phys. Radio Astron., 2006, vol. 11, no. 1, pp. 49–69.Google Scholar
  14. 14.
    Lyubushin, A.A., Analiz dannykh sistem geofizicheskogo i ekologicheskogo monitoringa (Geophysical and Environmental Monitoring System Data Analysis), Moscow: Nauka, 2007.Google Scholar
  15. 15.
    Marshall, T.C., Rust, W.D., Stolzenburg, M., Roeder, W.P., and Krehbiel, P.R., A study of enhanced fair-weather electric fields occurring soon after sunrise, J. Geophys. Res., 1999, vol. 104, no. D20, pp. 24455–24469.CrossRefGoogle Scholar
  16. 16.
    Mikhailova, G.A., Kapustina, O.V., and Smirnov, S.E., Nature of the sunrise effect in daily electric field variations at Kamchatka: 2. Electric field frequency variations, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 2, pp. 234–242.Google Scholar
  17. 17.
    Salikhov, N.M., Somsikov, V.M., Zhumbaev, B.T., and Andreev, A.B., Sunrise effects in the micropulsations of atmospheric pressure in highlands. elib/ Jumabaev%20%20Andreev.pdf.Google Scholar
  18. 18.
    Soloviev, S.P. and Surkov, V.V., Electric disturbances in the atmospheric surface layer due to an air shock wave, Fiz. Goreniya Vzryva, 1994, vol. 30, no. 1, pp. 117–121.Google Scholar
  19. 19.
    Soloviev, S.P., Rybnov, Yu.S., Kharlamov, V.A., and Krasheninnikov, A.V., Acoustic gravity waves and the atmospheric electric field perturbations accompanying them, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 3, pp. 335–346.Google Scholar
  20. 20.
    Somsikov, V.M., Solnechnyi terminator i dinamika atmosfery (Solar Terminator and Atmospheric Dynamics), Alma-Ata: Nauka, 1983.Google Scholar
  21. 21.
    Somsikov, V.M., Solar terminator and dynamic phenomena in the atmosphere: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 6, pp. 707–719.Google Scholar
  22. 22.
    Somsikov, V.M. and Troitskii, B.V., Generation of disturbances in the atmosphere when the solar terminator passes through the atmosphere, Geomagn. Aeron., 1975, vol. 15, no. 5, pp. 856–860.Google Scholar
  23. 23.
    Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Instrumentation and techniques for monitoring the geophysical fields of a megapolis and their use in Moscow Geophysical Monitoring Center at the Institute of Geosphere Dynamics, RAS, Seism. Prib., 2016, vol. 52, no. 2, pp. 65–78.Google Scholar
  24. 24.
    Yiğit, A. and Medvedev, A., Internal wave coupling processes in earth’s atmosphere, Adv. Space Res., 2015, vol. 55, pp. 983–1003.CrossRefGoogle Scholar
  25. 25.
    Yiğit, E., Knízova, P.K., Georgieva, K., and Ward, W., A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atmos. Sol.-Terr. Phys., 2016, vol. 141, pp. 1–12.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Geosphere Dynamics, Russian Academy of Sciences (IGD RAS)MoscowRussia

Personalised recommendations