Advertisement

Geomagnetism and Aeronomy

, Volume 59, Issue 2, pp 127–135 | Cite as

Features of the Spectral Characteristics of Plasma Fluctuations in Different Large-Scale Streams of the Solar Wind

  • M. O. RiazantsevaEmail author
  • L. S. Rakhmanova
  • G. N. Zastenker
  • Yu. I. Yermolaev
  • I. G. Lodkina
Article
  • 30 Downloads

Abstract

The turbulent characteristics of plasma fluctuations in the solar wind (SW) may substantially change depending on the SW conditions. Large-scale streams of different types, such as undisturbed slow solar wind, fast solar wind, interplanetary coronal mass ejection (EJECTA), magnetic cloud (MC), the compression region at the boundary between fast and slow streams (CIR), and the compression region in front of the EJECTA/MC (SHEATH), are usually characterized by specific plasma parameter values, which may influence turbulent cascade formation. In this paper, we analyze the properties of the spectra of ion flux fluctuations in the SW in the region of transition from the magnetohydrodynamic (MHD) scale to the kinetic one. The analysis is based on measurements carried out with the BMSW plasma spectrometer onboard the SPEKTR-R spacecraft with a high time resolution. The observational intervals inside the SW streams of different large-scale types are considered, and the main turbulence characteristics in these streams are compared. It was shown that the properties of the fluctuation spectra may strongly depend on the SW type; in particular, the spectrum of kinetic-scale fluctuations usually becomes much steeper inside the MC regions and the compression regions in front of them, as well as in the CIR. The characteristics of the fluctuation spectra on MHD scale are less dependent on the type of large-scale SW structures, and, on average, they correspond to the Kolmogorov spectra. However, it can be noted that the smallest spectral slopes are observed in the slow undisturbed solar wind, which is indicative of the differences from the traditional Kolmogorov model of the developed turbulence.

Notes

ACKNOWLEDGMENTS

The authors are grateful to their teammates involved in the design of the BMSW instrument at Charles University (Prague, Czech Republic) and colleagues from the Space Research Institute of the Russian Academy of Sciences, who participated in the in-flight control of the instrument and the transmission and preliminary processing of the scientific data. The study was supported by the Russian Science Foundation (grant no. 16-12-10062).

REFERENCES

  1. 1.
    Alexandrova, O., Chen, C.H.K., Sorisso-Valvo, L., Horbury, T.S., and Bale, S.D., Solar wind turbulence and the role of ion instabilities, Space Sci. Rev., 2013, vol. 178, nos. 2–4, pp. 101–139.  https://doi.org/10.1007/s11214-013-0004-8 CrossRefGoogle Scholar
  2. 2.
    Boldyrev, S. and Perez, J.C., Spectrum of kinetic-Alfvén turbulence, Astrophys. J., 2012, vol. 758, no. 2, id L44.  https://doi.org/10.1088/2041-8205/758/2/L44
  3. 3.
    Bruno, R. and Carbone, V., The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2013, vol. 10, no. 2.  https://doi.org/10.12942/lrsp-2013-2
  4. 4.
    Bruno, R., Trenchi, L., and Telloni, D., Spectral slope variation at proton scales from fast to slow solar wind, Astrophys J. Lett., 2014, vol. 793, no. 1, id L15.  https://doi.org/10.1088/2041-8205/793/1/L15
  5. 5.
    Celnikier, L.M., Muschietti, L., and Goldman, M.V., Aspects of interplanetary plasma turbulence, Astron. Astrophys., 1987, vol. 181, pp. 138–154.Google Scholar
  6. 6.
    Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., and Pongkitiwanichakul, P., Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements, Astrophys. J., 2009, vol. 707, no. 2, pp. 1668–1675.  https://doi.org/10.1088/0004-637X/707/2/1668 CrossRefGoogle Scholar
  7. 7.
    Chen, C.H.K., Salem, C.S., Bonnel, J.W., Mozer, F.S., and Bale, S.D., Density fluctuation spectrum on solar wind turbulence between ion and electron scales, Phys. Rev. Lett., 2012, vol. 109, 035001.  https://doi.org/10.1103/PhysRevLett.109.035001 CrossRefGoogle Scholar
  8. 8.
    Chen, C.H.K., Leung, L., Boldyrev, S., Maruca, B.A., and Bale, S.D., Ion-scale spectral break of solar wind turbulence at high and low beta, Geophys. Res. Lett., 2014a, vol. 41, no. 22, pp. 8081–8088.  https://doi.org/10.1002/2014GL062009 CrossRefGoogle Scholar
  9. 9.
    Chen, C.H.K., Sorriso-Valvo, L., Šafránková, J., and Němeček, Z., Intermittency of solar wind density fluctuations from ion to electron scales, Astrophys. J. Lett., 2014b, vol. 789, no. 1, id L8.  https://doi.org/10.1088/2041-8205/789/1/L8
  10. 10.
    Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov, Cambridge: Cambridge University Press, 1995.CrossRefGoogle Scholar
  11. 11.
    Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., and Schekochihin, A.A., A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind, J. Geophys. Res., 2008, vol. 113, no. A12, 5103.  https://doi.org/10.1029/2007JA012665 CrossRefGoogle Scholar
  12. 12.
    Kellogg, P.J. and Horbury, T.S., Rapid density fluctuations in the solar wind, Ann. Geophys., 2005, vol. 23, no. 12, pp. 3765–3773.  https://doi.org/10.5194/angeo-23-3765-2005 CrossRefGoogle Scholar
  13. 13.
    Kolmogorov, A.N., The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–304.Google Scholar
  14. 14.
    Lepping, R.P., Acuna, M.H., Burlaga, L.F., et al., The WIND magnetic field investigation, Space Sci. Rev., 1995, vol. 71, pp. 207–229.  https://doi.org/10.1007/BF00751330 CrossRefGoogle Scholar
  15. 15.
    Lion, S., Alexandrova, O., and Zaslavsky, A., Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence, Astrophys. J., 2016, vol. 824, no. 1, id 47.  https://doi.org/10.3847/0004-637X/824/1/47
  16. 16.
    Pitňa, A., Šafránková, J., Němeček, Z., Goncharov, O., Němec, F., Přech, L., Chen, C.H.K., and Zastenker, G.N., Density fluctuations upstream and downstream of interplanetary shocks, Astrophys. J., 2016, vol. 819, no. 1, id 41.  https://doi.org/10.3847/0004-637X/819/1/41
  17. 17.
    Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Variety of shapes of solar wind ion flux spectra: Spektr-R measurements, J. Plasma Phys., vol. 83, no. 4, 705830401.  https://doi.org/10.1017/S0022377817000502
  18. 18.
    Riazantseva, M.O., Rakhmanova, L.S., Zastenker, G.N., Yermolaev, Yu.I., Types of spectra of ion flux fluctuations in the solar wind and magnetosheath at the interface between inertial and dissipative ranges, Geomagn. Aeron. (Engl. Transl.), 2017a, vol. 57, no. 1, pp. 1–7.  https://doi.org/10.1134/S001679321701011X
  19. 19.
    Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., et al., Intermittency of the solar wind density near the interplanetary shock, Geomagn. Aeron. (Engl. Transl.), 2017b, vol. 57, no. 6, pp. 645–654.  https://doi.org/10.1134/S001679321706010X
  20. 20.
    Šafránková, J., Němeček, Z., Přech, L., Zastenker, G., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, nos. 1–4, pp. 165–182.  https://doi.org/10.1007/s11214-013-9979-4 CrossRefGoogle Scholar
  21. 21.
    Šafránková, J., Němeček, Z., Němec, F., Přech, L., Pitňa, A., Chen, C.H.K., and Zastenker, G.N., Solar wind density spectra around the ion spectral break, Astrophys. J., 2015, vol. 803, id 107.  https://doi.org/10.1088/0004-637X/803/2/107
  22. 22.
    Šafránková, J., Němeček, Z., Němec, F., Přech, L., Chen, C.H.K., and Zastenker, G.N., Power spectral density of fluctuations of bulk and thermal speeds in the solar wind, Astrophys. J., 2016, vol. 825, id 121.  https://doi.org/10.3847/0004-637X/825/2/121
  23. 23.
    Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., and Tatsuno, T., Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J. Suppl. Ser., 2009, vol. 182, pp. 310–377.CrossRefGoogle Scholar
  24. 24.
    Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W.H., and Veltri, P., A kinetic model of plasma turbulence, J. Plasma Phys., 2015, vol. 81, 325810107.  https://doi.org/10.1017/S00223778814000841 CrossRefGoogle Scholar
  25. 25.
    Unti, T.W.J., Neugebauer, M., and Goldstein, B.E., Direct measurements of solar-wind fluctuations between 0.0048 and 13.3 Hz, Astrophys. J., 1973, vol. 180, pp. 591–598.  https://doi.org/10.1086/151987 CrossRefGoogle Scholar
  26. 26.
    Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.  https://doi.org/10.1134/S0010952509020014 CrossRefGoogle Scholar
  27. 27.
    Zastenker, G.N., Šafránková, J, Němeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.  https://doi.org/10.1134/S0010952515010098 CrossRefGoogle Scholar
  28. 28.
    Zelenyi, L.M. and Milovanov, A.V., Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics, Phys.-Usp., 2004, vol. 47, no. 8, pp. 749–788.  https://doi.org/10.1070/PU2004v047n08ABEH001705 CrossRefGoogle Scholar
  29. 29.
    Zelenyi, L.M., Zastenker, G.N., Petrukovich, A.A., Chesalin, L.S., Nazarov, V.N., Prokhorenko, V.I., and Larionov, E.I., Plasma-F experiment onboard the Spectr-R satellite, Cosmic Res., 2013, vol. 51, no. 2, pp. 73–77.  https://doi.org/10.1134/S0010952513020093 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. O. Riazantseva
    • 1
    Email author
  • L. S. Rakhmanova
    • 1
  • G. N. Zastenker
    • 1
  • Yu. I. Yermolaev
    • 1
  • I. G. Lodkina
    • 1
  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations