Geomagnetism and Aeronomy

, Volume 59, Issue 2, pp 170–176 | Cite as

Supersubstorms and Conditions in the Solar Wind

  • I. V. DespirakEmail author
  • A. A. Lyubchich
  • N. G. Kleimenova


This article examines the effect of various large-scale solar-wind structures and streams on the occurrence of a special type of substorms—the so-called supersubstorms (SSS), which are very intense substorms defined by the indices SML <–2500 nT and AL < –2500 nT. The analysis covers 131 cases of SSS events from observations at the SuperMAG stations in 1998–2016 and 26 cases of SSS events from the IMAGE network. Analysis of the dependence of SSS events on different types of solar wind and different geomagnetic disturbances shows that these events are mainly observed during the approach to the Earth’s magnetosphere of solar-wind magnetic clouds (MC) (42%) and SHEATH plasma compression regions ahead of MCs or ahead of EJECTA. Supersubstorms may sometimes occur during EJECTA (8.3%). Thus, SSS events are caused by interplanetary coronal mass ejections and are, in fact, unassociated with high-speed streams from coronal holes. It is shown that SSS events mainly occur during magnetic storms (Dst < –50 nT). In the rare cases (13.4%) of SSS observations during intervals with Dst > –50 nT, the events occur mostly right after the sudden onset (SC) of a storm (11%) and, very rarely, happen late in the storm recovery phase (1.2%). The space weather conditions associated with SSS events differ sharply from those associated with other types of high-latitude substorms, such as polar and expanded substorms.



The work was partially supported by the program of the Presidium of RAS no. 28 “Fundamental problems of research and exploration of the Solar System.”


  1. 1.
    Adhikari, B., Baruwal, P., and Chapagain, N.P., Analysis of supersubstorm events with reference to polar cap potential and polar cap index, Earth Space Sci., 2017, vol. 4, no. 1, pp. 2–15. CrossRefGoogle Scholar
  2. 2.
    Ahn, B.H., Kroehl, H.W., Kamide, Y., and Kihn, E.A., Universal time variations of the auroral electrojet indices, J. Geophys. Res., 2000, vol. 105, no. A1, pp. 267–275. CrossRefGoogle Scholar
  3. 3.
    Burlaga, L.F., Klein, L., Sheeley, N.R.,Jr., Michels, D.J., Howard, R.A., Koomen, M.J., Schwenn, R., and Rosenbauer, H., A magnetic cloud and a coronal mass ejection, Geophys. Res. Lett., 1982, vol. 9, pp. 1317–1320.CrossRefGoogle Scholar
  4. 4.
    Cane, H.V. and Richardson, I.G., Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 2003, vol. 108, no. 4,
  5. 5.
    Davis, T.N. and Sugiura, M., Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 1966, vol. 71, no. 3, pp. 785–801. CrossRefGoogle Scholar
  6. 6.
    Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Polar and high latitude substorms and solar wind conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 575–582.Google Scholar
  7. 7.
    Despirak, I., Lubchich, A., and Kleimenova, N., Comparison of substorms near two solar cycle maxima: (1999–2000 and 2012–2013), Sun Geosphere, 2016, vol. 11, no. 2, pp. 105–110.Google Scholar
  8. 8.
    Despirak, I.V., Lubchich, A.A., and Kleimenova, N.G., High-latitude substorm dependence on space weather conditions in solar cycle 23 and 24 (SC23 and SC24), J. Atmos. Sol.-Terr. Phys, 2018a, vol. 177, pp. 54–62. CrossRefGoogle Scholar
  9. 9.
    Despirak, I., Lubchich, A., and Kleimenova, N., High-latitudes magnetic substorms under different types of the solar wind large-scale structure, Sun Geosphere, 2018b, vol. 13, no. 1, pp. 57–61.Google Scholar
  10. 10.
    Gjerloev, J.W., A global ground-based magnetometer initiative, Eos Trans. Am. Geophys. Union, 2009, vol. 90, no. 27, pp. 230–231. CrossRefGoogle Scholar
  11. 11.
    Gjerloev, J.W., The SuperMAG data processing technique, J. Geophys. Res., 2012, vol. 117, no. A9, A09213. CrossRefGoogle Scholar
  12. 12.
    Gopalswamy, N., Properties of interplanetary coronal mass ejections, Space Sci. Rev., 2006, vol. 124, nos. 1–4, pp. 145–168. CrossRefGoogle Scholar
  13. 13.
    Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., and Gjerloev, J.W., Supersubstorms (SML < –2500 nT): Magnetic storm and solar cycle dependences, J. Geophys. Res.: Space Phys., 2016, vol. 121, no. 8, pp. 7805–7816. CrossRefGoogle Scholar
  14. 14.
    Ivanov, K.G., Solar sources of the interplanetary plasma streams in the Earth’s orbit, Geomagn. Aeron. (Engl. Transl.), 1996, vol. 36, no. 2, pp. 158–163.Google Scholar
  15. 15.
    Kamide, Y. and Akasofu, S.-I., Notes on the auroral electrojet indices, Rev. Geophys., 1983, vol. 21, no. 7, pp. 1647–1656. CrossRefGoogle Scholar
  16. 16.
    Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B.T., Daglis, I.A., Brekke, A., and Masuda, S., Two-step development of geomagnetic storms, J. Geophys. Res., 1998, vol. 103, no. A4, pp. 6917–6921.CrossRefGoogle Scholar
  17. 17.
    Kappenman, J.G., Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and mid-latitude locations, Space Weather, 2003, vol. 1, no. 3, id 1016.
  18. 18.
    Kilpua, E.K.J., Madjarska, M.S., Karna, N., Wiegelmann, T., Farrugia, C., Yu, W., and Andreeova, K., Sources of the slow solar wind during the solar cycle 23/24 minimum, Sol. Phys., 2016, vol. 291, no. 8, pp. 2441–2456.CrossRefGoogle Scholar
  19. 19.
    Klein, L.W. and Burlaga, L.F., Interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 1982, vol. 87, no. A2, pp. 613–624.CrossRefGoogle Scholar
  20. 20.
    Lazutin, L.L. and Kuznetsov, S.N., Nature of sudden auroral activations at the beginning of magnetic storms, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 2, pp. 165–174.Google Scholar
  21. 21.
    Liou, K., Sotirelis, T., and Richardson, I., Substorm occurrence and intensity associated with three types of solar wind structure, J. Geophys. Res.-Space, 2018, vol. 123, no. 1, pp. 485–496. Scholar
  22. 22.
    Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 2011a, vol. 116, no. A12, A12211. CrossRefGoogle Scholar
  23. 23.
    Newell, P.T. and Gjerloev, J.W., Substorm and magnetosphere characteristic scales inferred from SuperMAG auroral electrojet indices, J. Geophys. Res., 2011b, vol. 116, no. A12, A12232. CrossRefGoogle Scholar
  24. 24.
    Richardson, I.G. and Cane, H.V., Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), J. Space Weather Space Clim., 2012, vol. 2, A02. Google Scholar
  25. 25.
    Rostoker, G., Geomagnetic indices, Rev. Geophys., 1972, vol. 10, no. 4, pp. 935–950. CrossRefGoogle Scholar
  26. 26.
    Sakharov, Ya.A., Danilin, A.N., Ostafiychuk, R.M., Katkalov, Yu.V., and Kudryashova, N.V., Geomagnetically induced currents in the power systems of the Kola peninsula at solar minimum, in Proc. of 8th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, St. Petersburg, 2009, pp. 237–238.Google Scholar
  27. 27.
    Schwenn, R., Solar wind sources and their variations over the solar cycle, Space Sci. Rev., 2006, vol. 124, nos. 1–4, pp. 51–76. CrossRefGoogle Scholar
  28. 28.
    Sheeley, N.R. Jr. and Harvey, J.W., Coronal holes, solar wind streams and geomagnetic disturbances during 1978 and 1979, Sol. Phys., 1981, vol. 70, no. 2, pp. 237–249.CrossRefGoogle Scholar
  29. 29.
    Tsurutani, B.T., Echer, E., Guarnieri, F.L., and Kozyra, J.U., CAWSES November 7–8, 2004, superstorm: Complex solar and interplanetary features in the post-solar maximum phase, Geophys. Res. Lett., 2008, vol. 35, no. 6, L06S05.
  30. 30.
    Tsurutani, B.T., Hajra, R., Echer, E., and Gjerloev, J.W., Extremely intense (SML ≤ –2500 nT) substorms: Isolated events that are externally triggered?, Ann. Geophys., 2015, vol. 33, no. 5, pp. 519–524.CrossRefGoogle Scholar
  31. 31.
    Viljanen, A. and Häkkinen, L., IMAGE magnetometer network, in Satellite-Ground Based Coordination Sourcebook, Lockwood, M., Wild, M.N., and Opgenoorth, H.J., Eds., ESA, 1997, pp. 111–117.Google Scholar
  32. 32.
    Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.CrossRefGoogle Scholar
  33. 33.
    Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Y., Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms, J. Geophys. Res., 2012, vol. 117, no. A9, A00L07. Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Despirak
    • 1
    Email author
  • A. A. Lyubchich
    • 1
  • N. G. Kleimenova
    • 2
  1. 1.Polar Geophysical InstituteApatityRussia
  2. 2.Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations