Geomagnetism and Aeronomy

, Volume 59, Issue 2, pp 177–184 | Cite as

Solar Activity Index for the Long-Term Prediction of the F2 Layer Critical Frequency

  • M. G. DeminovEmail author
  • G. F. Deminova


Based on a comparison of the 12-month moving averages of the solar activity indices with the ionospheric index of solar activity IG12 for the period of 1954–2014, we estimated the relative accuracies of the solar indices as indicators of solar activity for the medians of the F2 layer critical frequency for a month. These solar indices are the previous (Rz12) and new (Ri12) versions of the relative sunspot number, as well as the 10.7 cm solar radio flux F12 scaled to Rz12, (Rf12) correction for low solar activity. The interval of 1954–2014 spans solar cycles 19–23 and incomplete cycle 24. It was found that, on the whole, the index Ri12 is more accurate than Rz12 and that the indices RF12 and Rf12 are more accurate than Rz12 and Ri12. The accuracies of the indices RF12 and Rf12 for cycles 19–20 coincide. For cycles 21–24, the index Rf12 is more accurate than RF12, and this advantage of Rf12 is especially distinct in cycles 23–24. The index Rf12 differs from RF12 only by the introduction of a new additional correction for low solar activity. This analytical correction was obtained from the condition of the minimum average deviation of Rf12 from IG12, which makes the index Rf12 advantageous as the most adequate indicator of the solar activity for the foF2 median among the solar indices.



The data on the solar activity indices were taken from the websites (WDC-SILSO, Royal Observatory of Belgium, Brussels) and (World Data Center for Solar-Terrestrial Physics, Chilton).

The study is supported in part by the Russian Foundation for Basic Research (project no. 17-05-00427) and Program 28 of the Presidium of the Russian Academy of Sciences.


  1. 1.
    Araujo-Pradere, E.A., Buresova, D., Fuller-Rowell, D.J., and Fuller-Rowell, T.J., Initial results of the evaluation of IRI hmF2 performance for minima 22–23 and 23–24, Adv. Space Res., 2013, vol. 51, no. 4, pp. 630–638.CrossRefGoogle Scholar
  2. 2.
    Balogh, A., Hudson, H.S., Petrovay, K., and von Steiger, R., Introduction to the solar activity cycle: Overview of causes and consequences, Space Sci. Rev., 2014, vol. 186, no. 1, pp. 1–15.CrossRefGoogle Scholar
  3. 3.
    Bilitza, D., The International Reference Ionosphere—Status 2013, Adv. Space Res., 2015, vol. 55, no. 8, pp. 1914–1927.CrossRefGoogle Scholar
  4. 4.
    Bilitza, D., Brown, S.A., Wang, M.Y., Souza, J.R., and Roddy, P.A., Measurements and IRI model predictions during the recent solar minimum, J. Atmos. Sol.-Terr. Phys., 2012, vol. 86, pp. 99–106.CrossRefGoogle Scholar
  5. 5.
    Bowman, B.R., Tobiska, W.K., Marcos, F.A., Huang, C.Y., Lin, C.S., and Burke, W.J., A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, in AIAA/AAS Astrodynamics Specialist Conference, AIAA, 2008–6438.Google Scholar
  6. 6.
    Chen, Y., Liu, L., and Wan, W., Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009?, J. Geophys. Res., 2011, vol. 116, A04304. CrossRefGoogle Scholar
  7. 7.
    Clette, F., Svalgaard, L., Vaquero, J.M., and Cliver, E.W., Revisiting the sunspot number: A 400-year perspective on the solar cycle, Space Sci. Rev., 2014, vol. 186, pp. 35–103.CrossRefGoogle Scholar
  8. 8.
    Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., and Vaquero, J.M., Revision of the sunspot number(s), Space Weather, 2015, vol. 13.
  9. 9.
    Deminov, M.G., Solar activity index for long-term ionospheric forecasts, Cosmic Res., 2016, vol. 54, no. 1, pp. 1–7.CrossRefGoogle Scholar
  10. 10.
    Emmert, J.T., McDonald, S.E., Drob, D.P., Meier, R.R., Lean, J.L., and Picone, J.M., Attribution of interminima changes in the global thermosphere and ionosphere, J. Geophys. Res.: Space, 2014, vol. 119, pp. 6657–6688. CrossRefGoogle Scholar
  11. 11.
    Floyd, L., Newmark, J., Cook, J., Herring, L., and McMullin, D., Solar EUV and UV spectral irradiances and solar indices, J. Atmos. Sol.-Terr. Phys., 2005, vol. 67, nos. 1–2, pp. 3–15.CrossRefGoogle Scholar
  12. 12.
    Gulyaeva, T.L., Modification of the solar activity indices in the International Reference Ionosphere IRI and IRI-Plas models due to recent revision of sunspot number time series, Sol.-Terr. Phys., 2016, vol. 2, no. 3, pp. 87–98.Google Scholar
  13. 13.
    Hathaway, D.H., The solar cycle, living rev., Sol. Phys., 2015, vol. 12, no. 4.
  14. 14.
    ITU-R. Choice of Indices for Long-Term Ionospheric Predictions, Recommendation ITU-R P.371-8, Geneva: International Telecommunication Union, 1999.Google Scholar
  15. 15.
    ITU-R. Reference Ionospheric Characteristics, Recommendation ITU-R P.1239-3, Geneva: International Telecommunication Union, 2012.Google Scholar
  16. 16.
    Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., and Sridharan, R., A 20 year decline in solar photospheric magnetic fields: Inner-heliospheric signatures and possible implications, J. Geophys. Res.: Space, 2015, vol. 120, pp. 5306–5317. CrossRefGoogle Scholar
  17. 17.
    Jones, W.B. and Gallet, R.M., The representation of diurnal and geographic variations of ionospheric data by numerical methods, ITU Telecommun. J., 1962, vol. 29, pp. 129–147.Google Scholar
  18. 18.
    Jones, W.B. and Gallet, R.M., The representation of diurnal and geographic variations of ionospheric data by numerical methods, 2. Control of instability, ITU Telecommun. J., 1965, vol. 32, pp. 18–28.Google Scholar
  19. 19.
    Liu, R., Smith, P., and King, J., A new solar index which leads to improved foF2 predictions using the CCIR atlas, Telecommun. J., 1983, vol. 50, no. 8, pp. 408–414.Google Scholar
  20. 20.
    Livingston, W., Penn, M.J., and Svalgaard, L., Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux, Astrophys. J. Lett., 2012, vol. 757, id L8.
  21. 21.
    Lukianova, R. and Mursula, K., Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23, J. Atmos. Sol.-Terr. Phys., 2011, vol. 73, no. 2, pp. 235–240.CrossRefGoogle Scholar
  22. 22.
    Lühr, H. and Xiong, C., IRI-2007 model overestimates electron density during the 23/24 solar minimum, Geophys. Res. Lett., 2010, vol. 37, L23101. CrossRefGoogle Scholar
  23. 23.
    Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 15, pp. 1856–1862.CrossRefGoogle Scholar
  24. 24.
    Perna, L. and Pezzopane, M., foF2 vs Solar Indices for the Rome station: Looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24, J. Atmos. Sol.-Terr. Phys., 2016, vol. 148, pp. 13–21.CrossRefGoogle Scholar
  25. 25.
    Qian, L., Solomon, S.C., and Roble, R.G., Secular changes in the thermosphere and ionosphere between two quiet sun periods, J. Geophys. Res.: Space, 2014, vol. 119, pp. 2255–2262. CrossRefGoogle Scholar
  26. 26.
    Sezen, U., Gulyaeva, T.L., and Arikan, F., Performance of solar proxy options of IRI-Plas model for equinox seasons, J. Geophys. Res.: Space, 2018, vol. 123, pp. 1441–1456. CrossRefGoogle Scholar
  27. 27.
    Solomon, S.C., Qian, L., and Burns, A.G., The anomalous ionosphere between solar cycles 23 and 24, J. Geophys. Res.: Space, 2013, vol. 118, pp. 6524–6535. CrossRefGoogle Scholar
  28. 28.
    Svalgaard, L. and Hansen, W.W., Solar activity—past, present, future, J. Space Weather Space Clim., 2013, vol. 3, A24. CrossRefGoogle Scholar
  29. 29.
    Zolesi, B. and Cander, L.R., Ionospheric Prediction and Forecasting, Berlin: Springer, 2014.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations