Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1175–1186 | Cite as

Long-term Changes in Total Solar Irradiance and Their Predictions

  • A. V. MordvinovEmail author
  • A. A. Skakun
  • D. M. Volobuev


The Total Solar Irradiance (TSI) index of solar activity attracts the attention of a wide scientific audience due to its direct influence on the Earth’s climate. A number of reconstructions of inter-decadal TSI variability have been extended back to the early Holocene but these estimates still remain uncertain and depend on the model and proxy data used for the particular reconstruction. Here we compare the accuracy of nonlinear forecasts for different reconstructions, confirmed by the global Hurst exponent and pointwise Hölder regularity estimates with the only persistent, regular and predictable reconstruction. The deterministic reconstruction identified predicts a further slow decrease in average TSI level in Cycle 25. We applied the empirical mode decomposition to determine major TSI modes which mainly describe long-term changes in the Sun’s radiative output. We found a crucial role of ~100- and ~200-yr cycles in the occurrence of long-term TSI depressions related to grand minima in the Sun’s magnetic activity. A necessary condition for grand minima occurrence is established in terms of the major TSI modes. Based on the relationship, we conclude that a moderate TSI depression is possible in future decades without a grand minimum.



The authors thank F. Steinhilber and his coauthors for making it possible to analyze their TSI reconstruction. We thank Alexander Shapiro and Tatiana Egorova for kindly supporting us with data and details about the Egorova et al. (2018) reconstruction. The work was supported by the Russian Foundation for Basic Research, Projects nos. 17-32-50046 and 17-02-00016, and Basic Research program II.16.


  1. 1.
    Ayache, A. and Véhel, J.L., On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion, Stochastic Processes Their Appl., 2004, vol. 111, no. 1, pp. 119–156. doi 10.1016/ Scholar
  2. 2.
    Dewitte, S., Crommelynck, D., Mekaoui, S., and Jouko, A., Measurement and uncertainty of the long-term total solar irradiance trend, Sol. Phys., 2004, vol. 224, nos. 1–2, pp. 209–216. doi 10.1007/s11207-005-5698-7CrossRefGoogle Scholar
  3. 3.
    Egorova, T., Schmutz, W., Rozanov, E., Shapiro, A.I., Usoskin, I., Beer, J., Tagirov, R.V., and Peter, T., Revised historical solar irradiance forcing, Astron. Astrophys., 2018, vol. 615, id 85. doi 10.1051/0004-6361/201731199Google Scholar
  4. 4.
    Farmer, J.D. and Sidorowich, J.J., Predicting chaotic time series, Phys. Rev. Lett., 1987, vol. 59, no. 8, pp. 845–848. doi 10.1103/PhysRevLett.59.845CrossRefGoogle Scholar
  5. 5.
    Foukal, P., A new look at solar irradiance variation, Sol. Phys., 2012, vol. 279, no. 2, pp. 365–381. doi 10.1007/ s11207-012-0017-6CrossRefGoogle Scholar
  6. 6.
    Foukal, P. and Lean, J., Magnetic modulation of solar luminosity by photospheric activity, Astrophys. J., 1988, vol. 328, pp. 347–357.CrossRefGoogle Scholar
  7. 7.
    Fröhlich, C. and Lean, J., The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976, Geophys. Res. Lett., 1998, vol. 25, no. 23, pp. 4377–4380.CrossRefGoogle Scholar
  8. 8.
    Herrera, V.M.V., Mendoza, B., and Herrera, G.V., Reconstruction and prediction of the total solar irradiance: From the medieval warm period to the 21st century, New Astron., 2015, vol. 34, pp. 221–233.CrossRefGoogle Scholar
  9. 9.
    Huang, N.E. and Wu, Z., A review on Hilbert–Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 2008, vol. 46, no. 2.Google Scholar
  10. 10.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., and Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, Ser. A, 1998, vol. 454, no. 1971, pp. 903–995.Google Scholar
  11. 11.
    Istas, J. and Lang, G., Quadratic variations and estimation of the local Hölder index of a Gaussian process, Ann. Inst. Henri Poincare, Sect. B, 1997, vol. 33, no. 4, pp. 407–436.CrossRefGoogle Scholar
  12. 12.
    Kudryavtsev, I.V., Volobuev, D.M., Dergachev, V.A., Nagovitsyn, Y.A., and Ogurtsov, M.G., Reconstructions of the 14C cosmogenic isotope content from natural archives after the last glacial termination, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 7, pp. 858–862.Google Scholar
  13. 13.
    Lean, J., Rottman, G., Harder, J., and Kopp, G., SORCE contributions to new understanding of global change and solar variability, in The Solar Radiation and Climate Experiment (SORCE), Springer, 2005, pp. 27–53.Google Scholar
  14. 14.
    Mandal, S., Chatterjee, S., and Banerjee, D., Association of supergranule mean scales with solar cycle strengths and total solar irradiance, Astrophys. J., 2017, vol. 844, no. 1, id 25.Google Scholar
  15. 15.
    Mordvinov, A.V. and Kramynin, A.P., Long-term changes in sunspot activity, occurrence of grand minima, and their future tendencies, Sol. Phys., 2010, vol. 264, no. 1, pp. 269–278.CrossRefGoogle Scholar
  16. 16.
    Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., and Jungner, H., Long-period cycles of the Sun’s activity recorded in direct solar data and proxies, Sol. Phys., 2002, vol. 211, nos. 1–2, pp. 371–394.CrossRefGoogle Scholar
  17. 17.
    Olemskoy, S.V. and Kitchatinov, L.L., Grand minima and north–south asymmetry of solar activity, Astrophys. J., 2013, vol. 777, no. 1, id 71.Google Scholar
  18. 18.
    Pagaran, J., Weber, M., and Burrows, J., Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY, Astrophys. J., 2009, vol. 700, no. 2, pp. 1884–1895.CrossRefGoogle Scholar
  19. 19.
    Roth, R. and Joos, F., A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties, Clim. Past, 2013, vol. 9, no. 4, pp. 1879–1909.CrossRefGoogle Scholar
  20. 20.
    Sauer, T., Yorke, J.A., and Casdagli, M., Selection of optimal embedding parameters applied to short and noisy time series from Rössler system, J. Stat. Phys., 1991, vol. 65, nos. 3–4, pp. 579–616. doi 10.1007/BF01053745CrossRefGoogle Scholar
  21. 21.
    Scafetta, N. and Willson, R.C., ACRIM total solar irradiance satellite composite validation versus TSI proxy models, Astrophys. Space Sci., 2014, vol. 350, no. 2, pp. 421–442.CrossRefGoogle Scholar
  22. 22.
    Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V., and Nyeki, S., A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, Astron. Astrophys., 2011, vol. 529, id A67.Google Scholar
  23. 23.
    Simonsen, I., Hansen, A., and Nes, O.M., Determination of the Hurst exponent by use of wavelet transforms, Phys. Rev. E, 1998, vol. 58, no. 3, pp. 2779–2787.CrossRefGoogle Scholar
  24. 24.
    Steinhilber, F., Beer, J., and Fröhlich, C., Total solar irradiance during the Holocene, Geophys. Res. Lett., 2009, vol. 36, no. 19.Google Scholar
  25. 25.
    Struzik, Z.R., Determining local singularity strengths and their spectra with the wavelet transform, Fractals, 2000, vol. 8, no. 2, pp. 163–179.CrossRefGoogle Scholar
  26. 26.
    Sugihara, G. and May, R.M., Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 1990, vol. 344, no. 6268, pp. 734–741.CrossRefGoogle Scholar
  27. 27.
    Tlatov, A.G. and Pevtsov, A.A., On the timing of the next great solar activity minimum, Adv. Space Res., 2017, vol. 60, no. 5, pp. 1108–1114.CrossRefGoogle Scholar
  28. 28.
    Usoskin, I.G., A history of solar activity over millennia, Living Rev. Sol. Phys., 2017, vol. 14, pp. 3–100.CrossRefGoogle Scholar
  29. 29.
    Usoskin, I.G., Sokoloff, D., and Moss, D., Grand minima of solar activity and the mean-field dynamo, Sol. Phys., 2009, vol. 254, pp. 345–355.CrossRefGoogle Scholar
  30. 30.
    Usoskin, I.G., Bazilevskaya, G.A., and Kovaltsov, G.A., Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers, J. Geophys. Res.: Space Phys., 2011, vol. 116, id A02104.Google Scholar
  31. 31.
    Vieira, L.E.A., Solanki, S.K., Krivova, N.A., and Usoskin, I., Evolution of the solar irradiance during the Holocene, Astron. Astrophys., 2011, vol. 531, id A6.Google Scholar
  32. 32.
    Volobuev, D., “TOY” dynamo to describe the long-term solar activity cycles, Sol. Phys., 2006, vol. 238, no. 2, pp. 421–433.CrossRefGoogle Scholar
  33. 33.
    Volobuev, D.M. and Makarenko, N.G., Forecast of the decadal average sunspot number, Sol. Phys., 2008, vol. 249, pp. 121–138.CrossRefGoogle Scholar
  34. 34.
    Volobuev, D.M. and Makarenko, N.G., Long-term pulses of dynamic coupling between solar hemispheres, Sol. Phys., 2017, vol. 292, pp. 68–78.CrossRefGoogle Scholar
  35. 35.
    Wang, Y.-M., Lean, J.L., and Sheeley, N.R., Modeling the Sun’s magnetic field and irradiance since 1713, Astrophys. J., 2005, vol. 625, pp. 522–538.CrossRefGoogle Scholar
  36. 36.
    Wenzler, T., Solanki, S.K., and Krivova, N.A., Reconstructed and measured total solar irradiance: Is there a secular trend between 1978 and 2003, Geophys. Res. Lett., 2009, vol. 36, id L11102.Google Scholar
  37. 37.
    Willson, R.C. and Hudson, H.S., The Sun’s luminosity over a complete solar cycle, Nature, 1991, vol. 351, pp. 42–44.CrossRefGoogle Scholar
  38. 38.
    Willson, R.C. and Mordvinov, A.V., Secular total solar irradiance trend during solar cycles, Geophys. Res. Lett., 2003, vol. 30, no. 5, pp. 21–23.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Mordvinov
    • 1
    Email author
  • A. A. Skakun
    • 2
    • 3
  • D. M. Volobuev
    • 2
  1. 1.Institute of Solar–Terrestrial Physics of Siberian Branch of Russian Academy of SciencesIrkutskRussia
  2. 2.Pulkovo Astronomical Observatory, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations