Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1123–1128 | Cite as

The Effect of Heat Conduction on the Formation of Coronal Condensations in the Solar Atmosphere

  • K. V. RomanovEmail author


In this work, the evolution of oscillation instability in large-scale magnetic fields in the upper layers of the Sun’s convective zone is studied. The nonlinear phase of the Parker instability evolution is studied in the thin magnetic tube approximation for slow oscillation modes up to the saturation stage. The dynamics of magnetic structures emerging from the convective zone to the solar atmosphere was calculated taking into account the heating of the magnetic tube gas due to the effect of heat conduction along magnetic field lines. Two phases of the formation of solar prominences (coronal condensations) under conditions of the anomalously heated solar atmosphere are distinguished: the explosive phase of the magnetic field emission into the solar chromosphere with hypersonic velocities (about 300 km/s) and the phase of deceleration of emerging magnetic fields in the Sun’s corona. The stability of coronal condensations is preliminarily analyzed depending on their horizontal size in the solar atmosphere. The physical processes leading to the implementation of coronal transients (coronal mass ejections) in the solar atmosphere after the explosive phase of the magnetic field emission to the chromosphere are revealed.



  1. 1.
    Alekseenko, S.V., Dudnikova, G.I., Romanov, V.A., Romanov, D.V., Romanov, K.V., Semeonov, I.V., and Kucherov, N.V., Quasi-harmonic large-scale oscillations of magnetic fields in a convective zone, in International Conference on the Methods of Aerophysical Research, 2012a, vol. 1, pp. 12–13.Google Scholar
  2. 2.
    Alekseenko, S.V., Dudnikova, G.I., Romanov, V.A., Romanov, D.V., Romanov, K.V., Semeonov, I.V., and Kucherov, N.V., Characteristics of weak shock waves generated by quasi-harmonic oscillations of emerging magnetic fields, in International Conference on the Methods of Aerophysical Research, 2012b, vol. 1, pp. 14–15.Google Scholar
  3. 3.
    Braginskii, S.I., Voprosy teorii plazmy (Problems in the Theory of Plasma), Moscow: Atomizdat, 1963, vol. 1.Google Scholar
  4. 4.
    Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., et al., The current state of solar modeling, Science, 1996, vol. 272, pp. 1286–1292.CrossRefGoogle Scholar
  5. 5.
    Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Zs., Aulanier, G., and Young, A., What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978, Astron. Astrophys., 2002, vol. 382, pp. 650–665.CrossRefGoogle Scholar
  6. 6.
    Eselevich, V.G. and Eselevich, M.V., Common characteristics of CMEs and blobs: A new view of their possible origin, Sol. Phys., 2001, vol. 203, pp. 165–178.CrossRefGoogle Scholar
  7. 7.
    Knoelker, M. and Schuessler, M., Model calculations of magnetic flux tubes. IV. Convective energy transport and the nature of intermediate size flux concentrations, Astron. Astrophys., 1988, vol. 202, nos. 1–2, pp. 275–283.Google Scholar
  8. 8.
    MacQueen, R.M. and Fisher, R.R., The kinematics of solar inner coronal transients, Sol. Phys., 1983, vol. 89, pp. 89–102.CrossRefGoogle Scholar
  9. 9.
    Moreno-Insertis, F., Schuessler, M., and Ferriz-Mas, A., Storage of magnetic flux tubes in a convective overshoot region, Astron. Astrophys., 1992, vol. 264, pp. 686–700.Google Scholar
  10. 10.
    Parker E.M. Kosmicheskie magnitnye polya. Ikh obrazovanie i proyavleniya, Parker E.M. M. Mir. 1982. T. 1. 608 s. T. 2. 408 c.Google Scholar
  11. 11.
    Parker, E.N., The instability of a horizontal magnetic field in an atmosphere stable against convection, Astrophys. Space Sci., 1979, vol. 62, pp. 135–142.Google Scholar
  12. 12.
    Priest, E.R., Solar Magnetohydrodynamics, Dordrecht: Springer, 1982, Moscow: Mir, 1985.Google Scholar
  13. 13.
    Romanov, D.V. and Romanov, K.V., Numerical simulation of the development of instability of a slow wave of a fine magnetic tube in the convective zone of the Sun, Vychisl. Tekhnol., 2001, vol. 6., no. 6, pp. 81–92.Google Scholar
  14. 14.
    Romanov, D.V. and Romanov, K.V., Numerical simulation of dynamical processes in the solar atmosphere, Vychisl. Tekhnol., 2003, vol. 8, no. 2, pp. 74–95.Google Scholar
  15. 15.
    Sheeley, N.R., Walters, J.H., Wang, Y.-M., and Howard, R.A., Continuous tracking of coronal outflows: Two kinds of coronal mass ejections, J. Geophys. Res., 1999, vol. 104, pp. 24 739–24 768.CrossRefGoogle Scholar
  16. 16.
    Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., and Vršnak, B., Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares, Astrophys. J., 2010, vol. 712, no. 2, pp. 1410–1420.CrossRefGoogle Scholar
  17. 17.
    Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., and Kliem, B., Kink-unstable filament eruption, Astrophys. J. Lett., 2005, vol. 628, L163–L166.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Krasnoyarsk State Pedagogical UniversityKrasnoyarskRussia

Personalised recommendations