Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1103–1107 | Cite as

The Gnevyshev-Ohl Rule and Two Sunspot Group Populations

  • Yu. A. NagovitsynEmail author
  • A. A. Osipova
Article

Abstract

This work continues the study of the two sunspot group populations' properties discovered earlier (Nagovitsyn et al., 2009; Nagovitsyn et al., 2012; Nagovitsyn et al., 2017; Nagovitsyn and Pevtsov, 2016; Nagovitsyn et al., 2018; Osipova and Nagovitsyn, 2017). The concepts of “static” indices (when each sunspot group included in statistics once, characterizing the performance of the dynamo process) and “dynamic” indices (regular, when all the days of the group’s existence are present in statistics, describing, in particular, the influence of solar activity on terrestrial processes and heliosphere) are introduced. For static indices, the well-known Gnevyshev-Ohl rule in various formulations is tested—MGO, AGO, and DGO (see Introduction). The main conclusion is that for the number of small short-living groups (SSG) the Gnevyshev-Ohl rule is accurate to the contrary, and such groups form a pair in a 22-year cycle—a single whole in a combination of an odd and subsequent even cycle, with the latter having a smaller value.

Notes

6. ACKNOWLEDGMENTS

The reported study was funded by RFBR according to the research projects no. 16-02-00090 (Yu.A. Nagovitsyn) and no. 18-32-00555 (A.A. Osipova) and by research program no. 28 of the Presidium of Russian Academy of Sciences (Yu.A. Nagovitsyn and A.A. Osipova).

This work utilizes synoptic data from Royal Greenwich Observatory (RGO) and Kislovodsk Mountain Astronomical Station (KMAS). The authors thank RGO and KMAS teams for their open data policy.

REFERENCES

  1. 1.
    Badalyan, O.G. and Obridko, V.N., 22-year cycle of differential rotation of the solar corona and the rule by Gnevyshev–Ohl, Mon. Not. R. Astron. Soc., 2017, vol. 466, no 4, pp. 4535–4539.Google Scholar
  2. 2.
    Balmaceda, L.A., Solanki, S.K., and Krivova, N., A cross-calibrated sunspot areas time series since 1874, Mem. Soc. Astron. Ital., 2005, vol. 76, pp. 929–932.Google Scholar
  3. 3.
    Boruta, N., Solar dynamo surface waves in the presence of a primordial magnetic field: A 30 Gauss upper limit in the solar core, Astrophys. J., 1996, vol. 458, p. 832.CrossRefGoogle Scholar
  4. 4.
    Bravo, S. and Stewart, G., The inclination of the heliomagnetic equator and the presence of an inclined relic field in the Sun, Astrophys. J., 1995, vol. 446, p. 431.CrossRefGoogle Scholar
  5. 5.
    Charbonneau, P., Beaubien, G., and St.-Jean, C., Fluctuations in Babcock–Leighton dynamos. II. Revisiting the Gnevyshev–Ohl rule, Astrophys. J., 2007, vol. 658, pp. 657–662.CrossRefGoogle Scholar
  6. 6.
    Gnevyshev, M.N. and Ohl, A.I., On the 22-yr cycle of solar activity, Astron. Zh., 1948, vol. 25, no.1, pp. 18–20.Google Scholar
  7. 7.
    Javaraiah, J., North–south asymmetry in small and large sunspot group activity and violation of even–odd solar cycle rule, Astrophys. Space Sci., 2016, vol. 361, no. 7, id 208.Google Scholar
  8. 8.
    Li, K.J., Qiu, J., Su, T.W., and Gao, P.X., Sunspot unit area: A new parameter to describe long-term solar variability, Astrophys. J., 2005, vol. 621, no. 1, pp. L81–L84.CrossRefGoogle Scholar
  9. 9.
    Muñoz-Jaramillo, A., Senkpeil, R.R., Windmueller, J.C., Amouzou, E.C., Longcope, D.W., Tlatov, A.G., Nagovitsyn, Yu.A., Pevtsov, A.A., Chapman, G.A., Cookson, A.M., et al., Small-scale and global dynamos and the area and flux distributions of active regions, sunspot groups, and sunspots: A multi-database study, Astrophys. J., 2015a, vol. 800, no. 1, id 48.Google Scholar
  10. 10.
    Muñoz-Jaramillo, A., Senkpeil, R.R., Longcope, D.W., Tlatov, A.G., Pevtsov, A.A., Balmaceda, L.A., DeLuca, E.E., and Martens, P.C.H., The minimum of solar cycle 23: As deep as it could be?, Astrophys. J., 2015b, vol. 804, no. 1, id 68.Google Scholar
  11. 11.
    Mursula, K., Usoskin, I.G., and Kovaltsov, G.A., Persistent 22-year cycle in sunspot activity: Evidence for a relic solar magnetic field, Sol. Phys., 2001, vol. 198, no. 1, pp. 51–56.CrossRefGoogle Scholar
  12. 12.
    Nagovitsyn, Y.A. and Pevtsov, A.A., On the presence of two populations of sunspots, Astrophys. J., 2016, vol. 833, no. 1, id 94.Google Scholar
  13. 13.
    Nagovitsyn, Yu.A., Nagovitsyna, E.Yu., and Makarova, V.V., The Gnevyshev–Ohl rule for physical parameters of the solar magnetic field: The 400-year interval, Astron. Lett., 2009, vol. 35, no. 8, pp. 564–571.CrossRefGoogle Scholar
  14. 14.
    Nagovitsyn, Y.A., Pevtsov, A.A., and Livingston, W.C., On a possible explanation of the long-term decrease in sunspot field strength, Astrophys. J. Lett., 2012, vol. 758, no. 1, id L20.Google Scholar
  15. 15.
    Nagovitsyn, Y.A., Pevtsov, A.A., and Osipova, A.A., Long-term variations in sunspot magnetic field-area relation, Astron. Nachr., 2017, vol. 338, no. 1, pp. 26–34.CrossRefGoogle Scholar
  16. 16.
    Nagovitsyn, Y.A., Pevtsov, A.A., and Osipova, A.A., Two populations of sunspots: Differential rotation, Astron. Lett., 2018, vol. 44, no. 3, pp. 202–211.CrossRefGoogle Scholar
  17. 17.
    Osipova, A.A. and Nagovitsyn, Y.A., The Waldmeier effect for two sunspot populations, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 8, pp. 1092–1100.Google Scholar
  18. 18.
    Sheeley, N.R., Jr., Surface evolution of the Sun’s magnetic field: A historical review of the flux-transport mechanism, Living Rev. Sol. Phys., 2005, vol. 2, no. 1, id 5.Google Scholar
  19. 19.
    Tlatov, A.G., The change of the solar cyclicity mode, Adv. Space Res., 2015, vol. 55, no. 3, pp. 851–856.CrossRefGoogle Scholar
  20. 20.
    Waldmeier, M., Neue Eigenschaften der Sonnenfleckenkurve, Astron. Mitt. Eidgenössischen Sternwarte Zürich, 1935, vol. 14, pp. 105–136.Google Scholar
  21. 21.
    Zolotova, N.V. and Ponyavin, D.I., The Gnevyshev–Ohl rule and its violations, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 7, pp. 902–906.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Central Astronomical Observatory at Pulkovo of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.State University of Aerospace InstrumentationSt. PetersburgRussia

Personalised recommendations