Geomagnetism and Aeronomy

, Volume 58, Issue 8, pp 1113–1122 | Cite as

Simulation of Subterahertz Emission from the April 2, 2017 Solar Flare Based on the Multiwavelength Observations

  • A. S. MorgachevEmail author
  • Yu. T. Tsap
  • V. V. Smirnova
  • G. G. Motorina


Millimeter (93 and 140 GHz) emission of the М6.4 solar flare detected on April 2, 2017 in the NOAA 12644 active region by the RT-7.5 telescope of the Bauman Moscow State Technical University is analyzed using the observational data provided by the Radio Solar Telescope Network (4.9, 8.8, and 15.4 GHz); the SDO/AIA satellites (Etreme Ultraviolet); and GOES, RHESSI, and Konus-Wind (X-rays). It is found that the spectral flux density of millimeter emission increases with frequency throughout the entire burst. The similarity between the profiles of millimeter and soft-X-ray radiation suggests that the burst is of a thermal nature. It follows from the results of calculations of the differential emission measure of coronal plasma based on the SDO/AIA data that its contribution to millimeter emission of the flare is negligible. The simulation of thermal emission of chromospheric flare plasma in the model of Machado (Machado et al., 1980) yields millimeter fluxes that are by several times lower than the observed ones. The physical implications of these results are discussed.



This study was supported by grants from the Russian Science Foundation (no. 16-12-10448, G.G. Motorina) and the Russian Foundation for Basic Research (no. 18-02-00856 A, Yu.T. Tsap; no. 16-02-00749, V.V. Smirnova) and financial support of the Ministry of education and science of Russian Federation (project no. 3.2722.2017/4.6, A.S. Morgachev) and programs P-28 of the Presidium of the Russian Academy of Sciences (V.V. Smirnova). The authors also thanks Alexandra Lysenko for providing the Konus-Wind data.


  1. 1.
    Aptekar, R.L., Frederiks, D.D., Golenetskii, S.V., Ilynskii, V.N., Mazets, E.P., Panov, V.N., Sokolova, Z.J., Terekhov, M.M., Sheshin, L.O., Cline, T.L., and Stilwell, D.E., Konus-W gamma-ray burst experiment for the GGS Wind spacecraft, Space Sci. Rev., 1995, vol. 71, nos. 1–4, pp. 265–272.CrossRefGoogle Scholar
  2. 2.
    Dulk, G.A., Radio emission from the Sun and stars, Ann. Rev. Astron. Astrophys., 1985, vol. 23, pp. 169–224.CrossRefGoogle Scholar
  3. 3.
    Fleishman, G.D. and Kontar, E.P., Sub-THz radiation mechanisms in solar flares, Astrophys. J. Lett., 2010, vol. 709, no. 2, pp. L127–L132.CrossRefGoogle Scholar
  4. 4.
    Fleishman, G.D. and Kuznetsov, A.A., Fast gyrosynchrotron codes, Astrophys. J. Lett., 2010, vol. 721, no. 2, pp. 1127–1141.CrossRefGoogle Scholar
  5. 5.
    Fleishman, G.D. and Kuznetsov, A.A., Theory of gyroresonance and free–free emissions from non-Maxwellian quasi-steady-state electron distributions, Astrophys. J., 2014, vol. 781, no. 2, id 77.Google Scholar
  6. 6.
    Guidice, D.A., Cliver, E.W., Barron, W.R., and Kahler, S., The air force RSTN system, Bull. Am. Astron. Soc., 1981, vol. 13, p. 553.Google Scholar
  7. 7.
    Hannah, I.G. and Kontar, E.P., Differential emission measures from the regularized inversion of Hinode and SDO data, Astron. Astrophys., 2012, vol. 539, id 146.Google Scholar
  8. 8.
    Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., and Smith, D.M., The RHESSI imaging concept, Sol. Phys., 2002, vol. 210, nos. 1–2, pp. 61–86.CrossRefGoogle Scholar
  9. 9.
    Kontar, E.P., Motorina, G.G., Jeffrey, N.L.S., Tsap, Y.T., Fleishman, G.D., and Stepanov, A.V., Frequency rising sub-THz emission from solar flare ribbons, 2018, eprint arXiv:1810.03922.Google Scholar
  10. 10.
    Krucker, S., Gimenez de Castro, C.G., Hudson, H.S., Trottet, G., Bastian, T.S., Hales, A.S., Kasparova, J., Klein, K.-L., Kretzschmar, M., Luthi, T., Mackinnan, A., Pohjolainen, S., and White, S.M., Solar flares at submillimeter wavelengths, Astron. Astrophys. Rev., 2013, vol. 21, no. 1, id 58.Google Scholar
  11. 11.
    Kundu, M.R. and Vlahos, L., Solar microwave bursts—A review, Space Sci. Rev., 1982, vol. 32, no. 4, pp. 405–462.CrossRefGoogle Scholar
  12. 12.
    Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., and Lindgren, R.W., The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO), Sol. Phys., 2012, vol. 275, nos. 1–2, pp. 17–40.CrossRefGoogle Scholar
  13. 13.
    Lin, R.P., Dennis, B.R., Hurford, G.J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, vol. 210, pp. 3–32.Google Scholar
  14. 14.
    Machado, M.E., Avrett, E.H., Vernazza, J.E., and Noyes, R.W., Semiempirical models of chromospheric flare regions, Astrophys. J., 1980, vol. 242, no. 15, pp. 336–351.CrossRefGoogle Scholar
  15. 15.
    Rozanov, B.A., The RT-7.5 millimeter-band radiotelescope of the MVTU, Izv. Vyssh. Uchebn. Zaved.: Ser. Radioelektron., 1981, vol. 24, no. 3, pp. 3–8.Google Scholar
  16. 16.
    Ryzhov, V.S., Zhil’tsov, A.V., Shumov, A.V., and Shustikov, V.Yu., Long-term observations of millimeter-band radio emission of solar flares by the RT-7.5 radiotelescope of the MVTU, in Radiolokatsiya, navigatsiya, svyaz’: XX mezhdunar. nauch.-tekhn. konf. RLNC-2014: Trudy (Radiolocation, Navigation, and Communication: Proceedings of the XX International Scientific and Technical Conference RLNC-2014), Voronezh, 2014, vol. 3, pp. 1821–1831.Google Scholar
  17. 17.
    Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., and Tomczyk, S., The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Solar Phys. 2012, vol. 275, p. 207.Google Scholar
  18. 18.
    Shustikov, V.Yu., Shumov, A.V., Tsap, Yu.T., Zharkova, N.A., Morgachev, A.S., Motorina, G.G., Kontar’, E.P., Nagnibeda, V.G., Ryzhov, V.S., Smirnova, V.V., and Strekalova, P.V., Modeling of the submillimeter-band radio emission of solar flares, Nauka Obraz., MGTU im. N.E. Baumana: Elektron. Zh., 2015, no. 9, pp. 106–121.Google Scholar
  19. 19.
    Smirnova, V.V., Nagnibeda, V.G., Ryzhov, V.S., Zhil’tsov, A.V., and Solov’ev, A.A., Observations of subterahertz radiation of solar flares with an RT-7.5 radiotelescope, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 8, pp. 997–999.Google Scholar
  20. 20.
    Smirnova, V.V., Tsap, Yu.T., Shumov, A.V., Morgachev, A.S., Motorina, G.G., Ryzhov, V.S., Zharkova, N.A., and Nagnibeda, V.G., Analysis of the mechanisms of generation of X-ray, microwave, and millimeter-band radiation in plasma of the solar flare of July 5, 2012, Nauka Obraz., MGTU im. N.E. Baumana: Elektron. Zh., 2016, no. 12, pp. 85–97.Google Scholar
  21. 21.
    Tsap, Yu.T., Smirnova, V.V., Morgachev, A.S., Motorina, G.G., Kontar, E.P., Nagnibeda,V.G., and Strekalova, P.V., On the origin of 140 GHz emission from the 4 July 2012 solar flare, Adv. Space Res., 2016, vol. 57, no. 7, pp. 1449–1455.CrossRefGoogle Scholar
  22. 22.
    Tsap, Yu.T., Smirnova, V.V., Morgachev, A.S., Motorina, G.G., and Kuznetsov, S.A., Nagnibeda, V.G., and Ryzhov, V.S., Millimeter and X-ray emission from the 5 July 2012 solar flare, Sol. Phys., 2018, vol. 293, no. 3, id 50.Google Scholar
  23. 23.
    White, S.M., Thomas, R.J., and Schwartz, R.A., Updated expressions for determining temperatures and emission measures from goes soft X-ray measurements, Sol. Phys., 2005, vol. 227, no. 2, pp. 231–248.CrossRefGoogle Scholar
  24. 24.
    Zaitsev, V.V., Stepanov, A.V., and Melnikov, V.F., Sub-terahertz emission from solar flares: The plasma mechanism of chromospheric emission, Astron. Lett., 2013, vol. 39, no. 9, pp. 650–659.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Morgachev
    • 1
    • 2
    Email author
  • Yu. T. Tsap
    • 1
    • 3
  • V. V. Smirnova
    • 1
    • 4
  • G. G. Motorina
    • 1
    • 5
  1. 1.Central Astronomical Observatory at Pulkovo of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Radiophysical Research Institute, Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  3. 3.Crimean Astrophysical Observatory, Russian Academy of SciencesNauchnyiRussia
  4. 4.University of TurkuTurkuFinland
  5. 5.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations