Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 7, pp 973–981 | Cite as

60-Year Cycle in the Earth’s Climate and Dynamics of Correlation Links between Solar Activity and Circulation of the Lower Atmosphere

  • S. V. VeretenenkoEmail author
  • M. G. Ogurtsov
Article
  • 8 Downloads

Abstract

Possible causes of the ~60-year periodicity observed in climatic characteristics and the evolution of long-term correlation links between the circulation of the lower atmosphere and phenomena caused by solar activity are explored in this paper. It is shown that the character of solar activity and galactic cosmic ray variation effects on the intensity of cyclonic processes at extratropical latitudes depends on epochs of the large-scale atmospheric circulation, which may be associated with the state of the stratospheric polar vortex. Global temperature variations associated with long-term oscillations of total solar irradiance are supposed to be a possible cause of changes in the state of the vortex and corresponding transformations of the large-scale circulation.

Notes

REFERENCES

  1. 1.
    Baldwin, M.P. and Dunkerton, T.J., Stratospheric harbingers of anomalous weather regimes, Science, 2001, vol. 294, pp. 581–584.CrossRefGoogle Scholar
  2. 2.
    Chambers, D.P., Merryfield, M.A., and Nerem, R.S., Is there a 60-year oscillation in global mean sea-level?, Geophys. Res. Lett., 2012, vol. 39, L18607.CrossRefGoogle Scholar
  3. 3.
    Clette, F. and Lefevre, L., The new sunspot number: Assembling all corrections, Sol. Phys., 2016, vol. 291, pp. 2629–2651.CrossRefGoogle Scholar
  4. 4.
    Frolov, I.E., Gudkovich, Z.M., Karklin, V.P., Kovalev, E.G., and Smolyanitsky, V.M., Climate Change in Eurasian Arctic Shelf Seas, Chichester, UK: Praxis, 2009.CrossRefGoogle Scholar
  5. 5.
    Girs, A.A., Makrotsirkulyatsionnyi metod dolgosrochnykh meteorologicheskikh prognozov (The Macrocirculation Method of Long-Term Meteorological Forecasts), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  6. 6.
    Gudkovich, Z.M., Karklin, V.P., Smolyanitskii, V.M., and Frolov, I.E., On the nature and causes of the Earth’s climate change, Probl. Arkt. Antarkt., 2009, no. 1, pp. 15–23.Google Scholar
  7. 7.
    Hoyt, D.V. and Schatten, K.H., A discussion of plausible solar irradiance variations, 1700–1992, J. Geophys. Res., 1993, vol. 98, no. A11, pp. 18895–18906.CrossRefGoogle Scholar
  8. 8.
    IPCC Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., et al., Eds., Cambridge: Cambridge University Press, 2013.Google Scholar
  9. 9.
    Kalnay, E., Kanamitsu, M., Kistler, R., et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 1996, vol. 77, pp. 437–472.CrossRefGoogle Scholar
  10. 10.
    Knudsen, M.F., Seidenkrantz, M.-S., Jacobsen, B.H., and Kuijpers, A., Tracking the Atlantic multidecadal oscillation through the last 8000 years, Nat. Commun., 2011. http://dx.doi.org/10.1038/ncomms1186Google Scholar
  11. 11.
    Minobe, S.A., 50–70 year oscillation over the North Pacific and North America, Geophys. Res. Lett., 1997, vol. 24, pp. 683–686.CrossRefGoogle Scholar
  12. 12.
    Ogurtsov, M., Lindholm, M., Jalkanen, R., and Veretenenko, S., Evidence for the Gleissberg solar cycle at the high-latitudes of the Northern Hemisphere, Adv. Space Res., 2015, vol. 55, no. 5, pp. 1285–1290.CrossRefGoogle Scholar
  13. 13.
    Polyakov, I.V., Bekryaev, R.V., Alekseev, G.V., Bhatt, U.S., Colony, R.L., Johnson, M.A., Maskshtas, A.P., and Walsh, D., Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000, J. Clim., 2003, vol. 16, pp. 2067–2077.CrossRefGoogle Scholar
  14. 14.
    Schlesinger, M.E. and Ramankutty, N., An oscillation in the global climate system of period 65–70 years, Nature, 1994, vol. 367, pp. 723–726.CrossRefGoogle Scholar
  15. 15.
    Torrence, C. and Compo, G.P., A practical guide to wavelet analyses, Bull. Am. Meteorol. Soc., 1998, vol. 79, pp. 61–78.CrossRefGoogle Scholar
  16. 16.
    Vangengeim, G.Ya., Basics of the macrocirculation method of long-term meteorological forecasts for the Arctic, Tr. Arkt. Nauchno-Issled. Inst., 1952, vol. 34.Google Scholar
  17. 17.
    Veretenenko, S.V. and Ogurtsov, M.G., Study of spatial and temporal structure of long-term effects of solar activity and cosmic ray variations on the lower atmosphere circulation, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 5, pp. 591–602.Google Scholar
  18. 18.
    Veretenenko, S. and Ogurtsov, M., Stratospheric polar vortex as a possible reason for temporal variations of solar activity and galactic cosmic ray effects on the lower atmosphere circulation, Adv. Space Res., 2014, vol. 54, no. 12, pp. 2467–2477.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe Physical-Technical Institute, Russian Academy of Sciences,St. Petersburg,Russia

Personalised recommendations