Geomagnetism and Aeronomy

, Volume 58, Issue 7, pp 1008–1013 | Cite as

Compton Scattering of the Hard X-Ray Flux of Solar Flares with Various Angular Anisotropies of Hard X-Ray Sources

  • E. P. Ovchinnikova
  • Yu. E. Charikov
  • A. N. Shabalin
  • G. I. Vasil’ev


The contribution of photons reflected from the solar photosphere to the intensity and the change in the slope of the energy spectrum of solar flare hard X-rays were analyzed as a function of the X-ray anisotropy. The angular and energy distributions of primary hard X-rays and the position of the flare loop on the solar disk were the main parameters in calculations. The contribution of the reflected component to the total flux for an anisotropic source may be as high as 70% at an energy range of 30–40 keV if the source is shifted relative to the solar disk center. The maximum change in the X-ray spectral index is 0.5.



The work of E.P. Ovchinnikova, Yu.E. Charikov, and A.N. Shabalin was supported by the Russian Science Foundation, grant no. 17-12-01378.


  1. 1.
    Allison, J., Amako, K., Apostolakis, J., Arce, P., and Asai, M., Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, vol. 835, pp. 186–225.Google Scholar
  2. 2.
    Bai, T. and Ramaty, R., Backscatter, anisotropy, and polarization of solar hard X-rays, Astrophys. J., 1978, vol. 219, pp. 705–726.CrossRefGoogle Scholar
  3. 3.
    Brown, J.C., The deduction of energy spectre of non-thermal electrons in flares from the observed dynamics spectra of hard X-ray burst, Sol. Phys., 1971, vol. 18, pp. 489–502.CrossRefGoogle Scholar
  4. 4.
    Charikov, Y.E. and Shabalin, A.N., Hard X-ray generation in the turbulent plasma of solar flares, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 8, pp. 1068–1074.Google Scholar
  5. 5.
    Fetisov, G., Sinkhrotronnoe izluchenie. Metody issledovaniya struktury veshchestv (Synchronous Radiation. Methods for Studying the Structure of Matter), Moscow: Fizmatlit, 2007.Google Scholar
  6. 6.
    Gorbikov, S.P. and Melnikov, V.F., The numerical solution of the Fokker–Planck equation for modeling of particle distribution in solar magnetic traps, Mat. Model., 2007, vol. 19, no. 2, pp. 112–122.Google Scholar
  7. 7.
    Hamilton, R.J., Lu, E.T., and Petrosian, V., Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma, Astrophys. J., 1990, vol. 354, pp. 726–734.CrossRefGoogle Scholar
  8. 8.
    Kontar, E.P. and Jeffrey, N.L.S., Positions and sizes of C-ray solar flare sources, Astron. Astrophys., 2010, vol. 513, p. L2.CrossRefGoogle Scholar
  9. 9.
    Kontar, E.P., MacKinnon, A.L., Schwartz, R.A., and Brown, J.C., Compton backscattered and primary X‑rays from solar flares: Angle dependent Green’s function correction for photospheric albedo, Astron. Astrophys., 2006, vol. 446, no. 3, pp. 1157–1163.CrossRefGoogle Scholar
  10. 10.
    Krucker, S., Battaglia, M., Cargill, P.J., Fletcher, L., and Hudson, H.S., Hard X-ray emission from the solar corona, Astron. Astrophys. Rev., 2008, vol. 16, nos. 3–4, pp. 155–208.CrossRefGoogle Scholar
  11. 11.
    Lin, R.P., Dennis, B.R., and Hurford, G.J., The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI), Sol. Phys., 2002, vol. 210, no. 5, pp. 3–32.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. P. Ovchinnikova
    • 1
  • Yu. E. Charikov
    • 1
  • A. N. Shabalin
    • 1
  • G. I. Vasil’ev
    • 1
  1. 1.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations