Advertisement

Geomagnetism and Aeronomy

, Volume 58, Issue 3, pp 295–306 | Cite as

Influence of Solar Wind Plasma Parameters on the Intensity of Isolated Magnetospheric Substorms

  • V. G. Vorobjev
  • O. I. Yagodkina
  • E. E. Antonova
  • V. L. Zverev
Article
  • 28 Downloads

Abstract

Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonova, E.E., Kornilov, I.A., Kornilova, T.A., Kornilov, O.I., and Stepanova, M.V., Features of auroral breakup obtained using data of ground-based television observations: case study, Ann. Geophys., 2009, vol. 27, pp. 1413–1422. doi 10.5194/angeo-27-1413-2009CrossRefGoogle Scholar
  2. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 278–281. doi 10.7868/S001679401403002XCrossRefGoogle Scholar
  3. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., Yagodkina, O.I., and Stepanova, M.V., Problems with mapping the auroral oval and magnetospheric substorms, Earth Planets Space, 2015, vol. 67, no. 1, id 166. doi 0.1186/s40623-015-0336-6Google Scholar
  4. Barkhatov, N.A., Vorobjev, V.G., Revunov, S.E., and Yagodkina, O.I., Effect of solar dynamics parameters on the formation of substorm activity, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 3, pp. 251–256. doi 10.1134/S0016793217030021CrossRefGoogle Scholar
  5. Boakes, P.D., Milan, S.E., Abel, G.A., Freeman, M.P., Chisham, G., and Hubert, B., A statistical study of the open magnetic flux content of the magnetosphere at the time of substorm onset, Geophys. Res. Lett., 2009, vol. 36, L04105. doi 10.1029/2008GL037059CrossRefGoogle Scholar
  6. Gallardo-Lacourt, B., Nishimura, Y., Lyons, K.R., and Donovan, E., External triggering of substorms identified using modern optical versus geosynchronous particle data, Ann. Geophys., 2012, vol. 30, pp. 667–673. doi 10.5194/angeo-30-667-2012CrossRefGoogle Scholar
  7. Hsu, T.-S. and McPherron, R.L., Average characteristics of triggered and nontriggered substorms, J. Geophys. Res., 2004, vol. 109, A07208. doi 10.1029/2003JA009933Google Scholar
  8. Kallio, E.I., Pulkkinen, T.I., Koskinen, H.E.J., et al., Loading–unloading processes in the nightside ionosphere, Geophys. Res. Lett., 2000, vol. 27, no. 11, pp. 1627–1630. doi 10.1029/1999GL003694CrossRefGoogle Scholar
  9. Kan, J.R. and Lee, L.C., Energy coupling and the solar wind dynamo, Geophys. Res. Lett., 1979, vol. 6, no. 7, pp. 577–580. doi 10.1029/GL006i007p00577CrossRefGoogle Scholar
  10. Kirpichev, I.P., Yagodkina, O.I., Vorobjev, V.G., and Antonova, E.E., Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 407–414. doi 10.7868/S0016794016040064CrossRefGoogle Scholar
  11. Lazutin, L.L., Rentgenovskoe izluchenie avroral’nykh elektronov i dinamika magnitosfery (X-Ray Emission of Auroral Electrons and Magnetospheric Dynamics), Leningrad: Nauka, 1979.Google Scholar
  12. Lazutin, L.L., X-ray emissions of auroral electrons and magnetospheric dynamics, in Physics and Chemistry in Space, Berlin: Springer, 1986, vol. 14.Google Scholar
  13. Li, H., Wang, C., and Peng, Z., Solar wind impact on growth phase duration and substorm intensity, J. Geophys. Res., 2013, vol. 118, pp. 4270–4278. doi 10.1002/jgra.50399CrossRefGoogle Scholar
  14. Lopez, R.E., Sibeck, D.G., McEntire, R.W., and Krimigis, S.M., The energetic ion substorm injection boundary, J. Geophys. Res., 1990, vol. 95, no. A1, pp. 109–117. doi 10.1029/JA095iA01p00109CrossRefGoogle Scholar
  15. Lui, A.T.Y., Lopez, R.E., Anderson, B.J., et al., Current disruptions in the near-Earth neutral sheet region, J. Geophys. Res., 1992, vol. 97, no. A2, pp. 1461–1480. doi 10.1029/91JA02401CrossRefGoogle Scholar
  16. Lyons, L.R., Substorms: Fundamental observational features, distinction from other disturbances, and external triggering, J. Geophys. Res., 1996, vol. 101, no. A6, pp. 13011–13026. doi 10.1029/95JA01987CrossRefGoogle Scholar
  17. Lyons, L.R., Blanchard, G.T., Samson, J.C., Lepping, R.P., Yamamoto, T., and Moretto, T., Coordinated observations demonstrating external substorm triggering, J. Geophys. Res., 1997, vol. 102, no. A12, pp. 27039–27051. doi 10.1029/97JA02639CrossRefGoogle Scholar
  18. McPherron, R.L., Growth phase of magnetospheric substorms, J. Geophys. Res., 1970, vol. 75, no. 28, pp. 5592–5599.CrossRefGoogle Scholar
  19. Milan, S.E., Grocott, A., Forsyth, C., Imber, S.M., Boakes, P.D., and Hubert, B., A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: Open magnetic flux control of substorm intensity, Ann. Geophys., 2009, vol. 27, no. 2, pp. 659–668. doi 10.5194/angeo-27-659-20092CrossRefGoogle Scholar
  20. Newell, P.T. and Liou, K., Solar wind driving and substorm triggering, J. Geophys. Res., 2011, vol. 116, A03229. doi 10.1029/2010JA016139CrossRefGoogle Scholar
  21. Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F.J., A nearly universal solar wind–magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. doi 10.1029/2006JA012015Google Scholar
  22. Newell, P.T., Gjeroev, J.W., and Mitchell, E.J., Space climate implications from substorm frequency, J. Geophys. Res., 2013, vol. 118, no. 10, pp. 6254–6265. doi 10.1002/jgra.50597CrossRefGoogle Scholar
  23. Newell, P.T., Liou, K., Gjeroev, J.W., Sotirelis, T., Wing, S., and Mitchell, E.J., Substorm probabilities are best predicted from solar wind speed, J. Atmos. Sol.-Terr. Phys., 2016, vol. 146, pp. 28–37. doi 10.1016/j.jastp.2016.04.019CrossRefGoogle Scholar
  24. Russell, C.T. and McPherron, R.L., The magnetotail and substorms, Space Sci. Rev., 1973a, vol. 15, nos. 2–3, pp. 205–266. doi 10.1007/BF00169321Google Scholar
  25. Russell, C.T. and McPherron, R.L., Semiannual variation of geomagnetic activity, J. Geophys. Res., 1973b, vol. 78, no. 1, pp. 92–108. doi 10.1029/JA78i001p00092CrossRefGoogle Scholar
  26. Shukhtina, M.A., Dmitrieva, N.P., Popova, N.G., Sergeev, V.A., Yahnin, A.G., and Despirak, I.V., Observational evidence of the loading–unloading substorm scheme, Geophys. Res. Lett., 2005, vol. 32, L17107. doi 10.1029/2005GL023779CrossRefGoogle Scholar
  27. Shukhtina, M.A., Dmitrieva, N.P., and Sergeev, V.A., On the conditions preceding sudden magnetotail magnetic flux unloading, Geophys. Res. Lett., 2014, vol. 41, no. 4, pp. 1093–1099. doi 10.1002/2014GL059290CrossRefGoogle Scholar
  28. Spanswick, E., Reeves, G.D., Donovan, E., and Friedel, R.H.W., Injection region propagation outside of geosynchronous orbit, J. Geophys. Res., 2010, vol. 115. doi 10.1029/2009JA015066Google Scholar
  29. Stepanova, M.V., Antonova, E.E., Bosqued, J.M., Kovrazhkin, R.A., and Aubel, K.R., Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset, J. Geophys. Res., 2002, vol. 107, no. A7. doi 10.1029/2001JA003503Google Scholar
  30. Terasawa, T., Fujimoto, M., Mukai, T., et al., Solar wind control of density and temperature in the near-Earth plasma sheet WIND/GEOTAIL collaboration, Geophys. Res. Lett., 1997, vol. 24, no. 8, pp. 935–938. doi 10.1029/96GL04018CrossRefGoogle Scholar
  31. Tsyganenko, N.A. and Mukai, T., Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 2003, vol. 108, no. A3, 1136. doi 10.1029/2002JA009707Google Scholar
  32. Vorobjev, V.G., Yagodkina, O.I., Starkov, G.V., and Feldstein, Y.I., A substorm in midnight auroral precipitation, Ann. Geophys., 2003, vol. 21, no. 12, pp. 2271–2280. doi 10.5194/angeo-21-2271-2003CrossRefGoogle Scholar
  33. Vorobjev, V.G., Rezhenov, B.V., and Yagodkina, O.I., The solar wind plasma density control of night-time auroral particle precipitation, Ann. Geophys., 2004, vol. 22, pp. 1047–1052. doi 10.5194/angeo-22-1047-2004CrossRefGoogle Scholar
  34. Vorobjev, V.G, Yagodkina O.I., and Zverev, V.L., Investigation of isolated substorms: Generation conditions and characteristics of different phases, Geomagn. Aeron. (Engl. Transl.), 2016,vol. 56, no. 6, pp. 682–693. doi 10.7868/S0016794001606016XCrossRefGoogle Scholar
  35. Wild, J.A., Woodfield, E.E., and Morley, S.K., On the triggering of auroral substorms by northward turnings of the interplanetary magnetic field, Ann. Geophys., 2009, vol. 27, pp. 3559–3570. doi 10.5194/angeo-27-3559-2009CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. G. Vorobjev
    • 1
  • O. I. Yagodkina
    • 1
  • E. E. Antonova
    • 2
  • V. L. Zverev
    • 1
  1. 1.Polar Geophysical InstituteApatity DivisionApatity, Murmansk regionRussia
  2. 2.Skobeltsyn Research Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations