Geomagnetism and Aeronomy

, Volume 58, Issue 2, pp 169–177 | Cite as

Galactic Cosmic Ray Intensity in the Upcoming Minimum of the Solar Activity Cycle

  • M. B. Krainev
  • G. A. Bazilevskaya
  • M. S. Kalinin
  • A. K. Svirzhevskaya
  • N. S. Svirzhevskii
Article
  • 11 Downloads

Abstract

During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth’s orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum (~2019–2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alania, M.V., Modzelewska, R., and Wawrzynczak, A., Peculiarities of cosmic ray modulation in the solar minimum 23/24, J. Geophys. Res.: Space, 2014, vol. 119, no. 6, pp. 4164–4174. doi 10.1002/2013JA019500CrossRefGoogle Scholar
  2. Bisi, M.M., Thompson, B.J., Emery, B.A., et al., The Sun–Earth connection near solar minimum: Placing it into context, Sol. Phys., 2011, vol. 274, nos. 1–2, pp. 1–3.CrossRefGoogle Scholar
  3. Cranmer, S.R., Hoeksema, J.T., Kohl, J.L., et al., SOHO-23: Understanding a peculiar solar minimum, Astron. Soc. Pac. Conf. Ser., 2010, vol. 428. CRIS/ACE. http://www.srl.caltech.edu/ACE/CRIS_SIS/cris.html.Google Scholar
  4. Hathaway, D.H., The solar cycle, Living Rev. Sol. Phys., 2015, vol. 12, no. 4, pp. 1–87. doi 10.1007/lrsp-2015-4Google Scholar
  5. IZMIRAN. http://cr0.izmiran.rssi.ru/common/links.htm.Google Scholar
  6. Kalinin, M.S., Bazilevskaya, G.A., Krainev, M.B., Svirzhevsky, N.S., Svirzhevskaya, A.K., and Stozhkov, Yu.I., Description of galactic cosmic ray intensity in the last three solar activity minima, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 5, pp. 606–608. doi 10.7868/S0367676515050245CrossRefGoogle Scholar
  7. Kalinin, M.S., Bazilevskaya, G.A., Krainev, M.B., Svirzhevsky, N.S., Svirzhevskaya, A.K., and Starodubtsev, S.A., Modulation of galactic cosmic rays in solar cycles 22–24: Analysis and physical interpretation, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 549–558.CrossRefGoogle Scholar
  8. Kozlov, V.I. and Kozlov, V.V., Cosmic ray fluctuation parameter as indicator of 11-year cycle activity growth phase, J. Phys: Conf. Ser., 2013, vol. 409, no. 1, 012160. doi 10.1088/1742-6596Google Scholar
  9. Kozlov, V.I. and Kozlov, V.V., Aritmiya Solntsa. V kosmicheskikh luchakh (Solar Arrhythmia: Under Cosmic Rays), Yakutsk: IMZ SO RAN, 2016.Google Scholar
  10. Krainev, M.B., Bazilevskaya, G.A., Kalinin, M.S., Svirzhevskaya, A.K., and Svirzhevsky, N.S., Modeling the time and energy behavior of the GCR intensity in the periods of low activity around the last three solar minima, 2014. https://arxiv.org/abs/1411.7526.Google Scholar
  11. Krainev, M.B., The electromagnetic field in and outside the solar wind cavity and the galactic cosmic rays, in Proc. 17th ICRC, Paris, 1981, vol. 3, pp. 357–360.Google Scholar
  12. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., and Skou, R.M., Weaker solar wind from the polar coronal holes and the whole Sun, Geophys. Res. Lett., 2008, vol. 35, no. 18, L18103. doi 10.1029/2008GL034896CrossRefGoogle Scholar
  13. McDonald, F.B., Cosmic ray modulation in the heliosphere. A phenomenological study, Space Sci. Rev., 1998, vol. 83, nos. 1–2, pp. 33–50.CrossRefGoogle Scholar
  14. Mewaldt, R.A., Cosmic rays in the heliosphere: Requirements for future observations, Space Sci. Rev., 2013, vol. 176, nos. 1–2, pp. 365–390. doi 10.1007/s11214-012-9922-0CrossRefGoogle Scholar
  15. MSFC. http://solarscience.msfc.nasa.gov/. Omni. http://omniweb.gsfc.nasa.gov/.Google Scholar
  16. Paouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., and Yanke, V., Galactic cosmic ray modulation and the last solar minimum, Sol. Phys., 2012, vol. 280, no. 1, pp. 255–271. doi 10.1007/s11207-012-0051-4CrossRefGoogle Scholar
  17. Potgieter, M.S., Cosmic rays in the inner heliosphere: Insights from observations, theory and models, Space Sci. Rev., 2013, vol. 176, nos. 1–4, pp. 165–176. doi 10.1007/s214-011-9750-7CrossRefGoogle Scholar
  18. Potgieter, M.S., Vos, E.E., Boezio, M., De Simone, N., Di Felice, V., and Formato, V., Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009, Sol. Phys., 2014, vol. 289, no. 1, pp. 391–406. doi 10.1007/s11207-013-0324-6Google Scholar
  19. Sheeley, N.R., Jr., What’s so peculiar about the cycle 23/24 solar minimum?, in SOHO-23: Understanding a Peculiar Solar Minimum, ASP Conf. Ser., 2010, vol. 428, pp. 3–13.Google Scholar
  20. Stozhkov, Yu.I., Svirzhevsky, N.S., Bazilevskaya, G.A., Svirzhevskaya, A.K., Kvashnin, A.N., Krainev, M.B., Makhmutov, V.S., and Klochkova, T.I., Cosmic ray fluxes in the maximum of absorption curve in the atmosphere and on its boundary, Preprint of Lebedev Physical Institute, Russ. Acad. Sci., Moscow, 2007, no. 14.Google Scholar
  21. Svirzhevsky, N.S., Bazilevskaya, G.A., Kalinin, M.S., Krainev, M.B., Svirzhevskaya, A.K., and Stozhkov, Yu.I., Crossovers of the energy spectra of galactic cosmic rays in the activity minima of consecutive solar cycles, Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 2, pp. 162–165. doi 10.7868/S0367676517020429CrossRefGoogle Scholar
  22. WSO. http://wso.stanford.edu/.Google Scholar
  23. Zhao, L.-L., Qin, G., Zhang, M., and Heber, B., Modulation of galactic cosmic rays during the unusual solar minimum between cycles 23 and 24, J. Geophys. Res.: Space, 2014, vol. 119, no. 3, pp. 1493–1506. doi 10.1002/2013JA01CrossRefGoogle Scholar
  24. Zharkova, V.V., Shepherd, S.J., Popova, E., and Zharkov, S.I., Heartbeat of the Sun from principal component analysis and prediction of solar activity on a millenium timescale, Sci. Rep., 2015, vol. 5, 15689. doi 10.1038/srep15689CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. B. Krainev
    • 1
  • G. A. Bazilevskaya
    • 1
  • M. S. Kalinin
    • 1
  • A. K. Svirzhevskaya
    • 1
  • N. S. Svirzhevskii
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations