Geomagnetism and Aeronomy

, Volume 58, Issue 1, pp 43–49 | Cite as

Signatures of Alfvenic Field-Line Resonance in the Behavior of Preonset Auroral Arcs

  • I. V. Golovchanskaya
  • I. A. Kornilov
  • T. A. Kornilova
  • O. I. Kornilov
  • T. G. Kogai
Article
  • 9 Downloads

Abstract

The evolution of preonset auroral arcs before full-scale auroral poleward expansion (the time T0 indicates the expansion onset) is studied based on ground-based optical observations filtered by the gradient method. In one of the three events studied in detail, the preonset arc exhibits periodic poleward excursions ~10 min before T0. The excursions extend over 1° in latitude, being repeated with a period of 2.5 min (frequency 6.7 mHz), and can be explained by the theory of classical (i.e., linear nondispersive) Alfvénic fieldline resonance (FLR), which is proposed to form and evolve at the location of subsequent substorm initiation. In two other events, the preonset arc evolves somewhat differently. Having appeared 15–20 min before T0, the arc brightens and develops a fine structure in the transverse direction, with new arcs detaching and propagating away from it. Such signatures may indicate a nonlinear dispersive FLR that periodically produces soliton-like structures propagating across and away from the resonance layer. The involved nonlinearity has a ponderomotive nature. The dispersive effects become significant if, as a result of fine structuring, perturbations are produced on the scales of order of the electron inertial length or ion gyroradius.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, W. and Wright, A.N.D., Hydromagnetic wave propagation and coupling in a magnetotail waveguide, J. Geophys. Res., 1998, vol. 103, no. 2, pp. 2359–2368.CrossRefGoogle Scholar
  2. Chen, L. and Hasegawa, A., A theory of long-period magnetic pulsations, J. Geophys. Res., 1974, vol. 79, no. 7, pp. 1024–1032.CrossRefGoogle Scholar
  3. Golovchanskaya, I.V., Kornilov, I.A., and Kornilova, T.A., East–west type precursor activity prior to the auroral onset: Ground-based and THEMIS observations, J. Geophys. Res., 2015, vol. 120, no. 2, pp. 1109–1123. doi 10.1002/2014JA020081CrossRefGoogle Scholar
  4. Greenwald, R.A. and Walker, A.D.M., Energetics of long period resonant hydromagnetic waves, Geophys. Res. Lett., 1980, vol. 7, no. 10, pp. 745–748.CrossRefGoogle Scholar
  5. Hughes, W.J., Hydromagnetic waves in the magnetosphere, in Solar-Terrestrial Physics: Principles and Theoretical Foundations, Carovillano, R., Ed., Dordrecht: D. Reidel, 1983, pp. 453–477.CrossRefGoogle Scholar
  6. Hughes, W.J. and Grard, R.J.L., A second harmonic geomagnetic field line resonance at the inner edge of the plasma sheet: GEOS 1, ISEE 1, and ISEE 2 observations, J. Geophys. Res., 1984, vol. 89, no. 5, pp. 2755–2764.CrossRefGoogle Scholar
  7. Kornilov, I.A. and Kornilov, O.I., Image improvement methods for processing television auroral data, in Pribory i metodika geofizicheskogo eksperimenta (Instruments and the Technique of Geophysical Experiments), Apatity: PGI, 2003, pp. 86–91.Google Scholar
  8. Kornilova, T.A., Kornilov, I.A., and Kornilov, O.I., Fine structure of breakup development inferred from satellite and ground-based observations, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1141–1148. doi 10.5194/angeo-26-1141-2008CrossRefGoogle Scholar
  9. Kornilova, T.A. and Kornilov, I.A., Counterstreaming auroral structures during substorm expansion, J. Geophys. Res., 2012, vol. 117, A05328. doi 10.1029/2011JA017309Google Scholar
  10. Lui, A.T.Y. and Murphree, J.S., A substorm model with onset location tied to an auroral arc, Geophys. Res. Lett., 1998, vol. 25, no. 8, pp. 1269–1272.CrossRefGoogle Scholar
  11. Rae, I.J., Murphy, K.R., Watt, C.E.J., Rostoker, G., Rankin, R., Mann, I.R., Hodgson, C.R., Frey, H.U., Degeling, A.W., and Forsyth, C., Field line resonances as a trigger and a tracer for substorm onset, J. Geophys. Res., 2014, vol. 119, pp. 5343–5363. doi 10.1002/2013JA018889CrossRefGoogle Scholar
  12. Rankin, R., Frycz, P., Tikhonchuk, V.T., and Samson, J.C., Ponderomotive saturation of magnetospheric field line resonances, Geophys. Res. Lett., 1995, vol. 22, no. 13, pp. 1741–1744.CrossRefGoogle Scholar
  13. Rankin, R., Samson, J.C., and Tikhonchuk, V.T., Discrete auroral arcs and nonlinear dispersive field line resonances, Geophys. Res. Lett., 1999, no. 6, pp. 663–666.CrossRefGoogle Scholar
  14. Rankin, R., Kabin, K., Lu, J.Y., Mann, I.R., Rae, I.J., Tikhonchuk, V.T., and Donovan, E.F., Magnetospheric field-line resonances: Ground-based observations and modeling, J. Geophys. Res., 2005, vol. 110, A10S09. doi 10.1029/2004JA010919CrossRefGoogle Scholar
  15. Samson, J.C., Hughes, T.J., Creutzberg, F., Wallis, D.D., Greenwald, R.A., and Ruohoniemi, J.M., Observations of a detached discrete arc in association with field line resonances, J. Geophys. Res., 1991, vol. 96, no. 9, pp. 15683–15695.CrossRefGoogle Scholar
  16. Samson, J.C., Wallis, D.D., Hughes, T.J., Creutzberg, F., Ruohoniemi, J.M., and Greenwald, R.A., Substorm intensifications and field line resonances in the nightside magnetosphere, J. Geophys. Res., 1992, vol. 97, no. 6, pp. 8495–8518.CrossRefGoogle Scholar
  17. Samson, J.C., Cogger, L.L., and Pao, Q., Observations of field line resonances, auroral arcs, and auroral vortex structures, J. Geophys. Res., 1996, vol. 101, no. 8, pp. 17373–17383.CrossRefGoogle Scholar
  18. Samson, J.C., Rankin, R., and Tikhonchuk, V.T., Optical signatures of auroral arcs produced by field line resonances: Comparison with satellite observations and modeling, Ann. Geophys., 2003, vol. 21, no. 4, pp. 933–945.CrossRefGoogle Scholar
  19. Southwood, D.J., Some features of field-line resonances in the magnetosphere, Planet. Space Sci., 1974, vol. 22, no. 3, pp. 483–491.CrossRefGoogle Scholar
  20. Streltsov, A.V., Lotko, W., Johnson, J.R., and Cheng, C.Z., Small-scale, dispersive field line resonances in the hot magnetospheric plasma, J. Geophys. Res., 1998, vol. 103, no. 11, pp. 26559–26572.CrossRefGoogle Scholar
  21. Wright, A.N., Allan, W., Elphinstone, R.D., and Cogger, L.L., Phase mixing and phase motion of Alfvén waves on taillike and dipole-like magnetic field lines, J. Geophys. Res., 1999, vol. 104, no. 5, pp. 10159–10175.CrossRefGoogle Scholar
  22. Wright, A.N. and Allan, W., Simulations of Alfvén waves in the geomagnetic tail and their auroral signatures, J. Geophys. Res., 2008, vol. 113, A02206. doi 10.1029/2007JA012464CrossRefGoogle Scholar
  23. Xu, B.-L., Samson, J.C., Liu, W.W., Creutzberg, F., and Hughes, T.J., Observations of optical aurora modulated by resonant Alfvén waves, J. Geophys. Res., 1993, vol. 98, no. 7, pp. 11531–11541.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Golovchanskaya
    • 1
  • I. A. Kornilov
    • 1
  • T. A. Kornilova
    • 1
  • O. I. Kornilov
    • 1
  • T. G. Kogai
    • 1
  1. 1.Polar Geophysical InstituteRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations