Advertisement

Geomagnetism and Aeronomy

, Volume 57, Issue 6, pp 698–705 | Cite as

Ground-based observations and simulation of ionospheric VLF source in experiments on modification of the polar ionosphere

  • O. M. Lebed’
  • Yu. V. Fedorenko
  • N. F. Blagoveshchenskaya
  • A. V. Larchenko
  • V. F. Grigor’ev
  • S. V. Pil’gaev
Article
  • 13 Downloads

Abstract

The phase velocities of TE and TEM waves at frequencies of 1017 and 3017 Hz, as well as the effect of precipitations during auroras on the velocities, are estimated in the Earth–ionosphere waveguide on the basis of observations of electromagnetic fields of an ionospheric source in experiments on modification of the lower ionosphere by a modulated high-power short-wave signals performed by the Arctic and Antarctic Research Institute (AARI) at the EISCAT/Heating test bench in October 2016. Probable electron density profiles in the plane-stratified ionosphere are retrieved from the numerical solution of a wave equation, which are used for the calculation of the phase velocities close to measured ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., McKinnell, L.-A., and Reinisch, B., The international reference ionosphere 2012—a model of international collaboration, J. Space Weather Space Clim., 2014, vol. 4, no. A07, pp. 1–12. doi 10.1051/swsc/2014004Google Scholar
  2. Cohen, M.B., Golkowski, M., and Inan, U.S., Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet, Geophys. Res. Lett., 2008, vol. 35, L02806. doi 10.1029/2007GL032424Google Scholar
  3. Cummer, S.A., Modeling electromagnetic propagation in the earth-Ionosphere waveguide, IEEE Trans. Antennas Propag., 2000, vol. 48, no. 9, pp. 1420–1429.CrossRefGoogle Scholar
  4. Eaton, J.W., Bateman, D., and Hauberg, S., GNU Octave Manual Version 3, UK: Network Theory Limited, 569 p., 2008.Google Scholar
  5. Fedorenko, Yu., Tereshchenko, E., Pilgaev, S., Grigoriev, V., and Blagoveshchenskaya, N., Polarization of ELF waves generated during “beat-wave” heating experiment near cutoff frequency of the earth–ionosphere waveguide, Radio Sci., 2014, no. 12, pp. 254–264. doi 10.1002/2013RS005336Google Scholar
  6. Filatov, M.V., Pil’gaev, S.V., and Fedorenko, Yu.V., A fourchannel 24-bit analog-to-digital converter synchronized with the universal-time clock, Instrum. Exp. Tech., 2011, vol. 54, no. 3, pp. 361–363.CrossRefGoogle Scholar
  7. Greifinger, C. and Greifinger, Ph., On the ionospheric parameters which govern high-latitude ELF propagation in the Earth–ionosphere waveguide, Radio Sci., 1979, vol. 14, pp. 889–895.CrossRefGoogle Scholar
  8. Larchenko, A.V., Lebed’, O.M., and Fedorenko, Yu.V., Three-component measurements of the electromagnetic field structure in the VLF and ELF ranges, Radiotekh. Elektron., 2015, vol. 60, no. 8, pp. 793–801.Google Scholar
  9. Lebed, O.M., Pil’gaev, S.V., and Fedorenko, Yu.V., A firmware system for phase measurements in extremely low and ultralow frequency ranges, Instrum. Exp. Tech., 2012, vol. 55, no. 3, pp. 351–356.CrossRefGoogle Scholar
  10. Lebed, O.M., Fedorenko, Yu.V., Larchenko, A.V., and Pil’gaev, S.V., Response of the auroral lower ionosphere to solar flares in March 2012 according to ELF observations, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 6, pp. 770779.Google Scholar
  11. Lebed, O.M., Larchenko, A.V., Pil’gaev, S.V., and Fedorenko, Yu.V., Reaction of the high-latitude lower ionosphere to solar proton events from observations in the ELF range, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 51–57. doi 10.7868/S0016794017010072CrossRefGoogle Scholar
  12. Lehtinen, N.G. and Inan, U.S., Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet, J. Geophys. Res., 2008, vol. 113, A06301.CrossRefGoogle Scholar
  13. Lehtinen, N.G. and Inan, U.S., Full-wave modeling of transionospheric propagation of VLF waves, Geophys. Res. Lett., 2009, vol. 36, no. 3, L03104.CrossRefGoogle Scholar
  14. Pil’gaev, S.V., Akhmetov, O.I., Filatov, M.V., and Fedorenko, Yu.V., A universal device for GPS data synchronization, PTE Prib. Tekh. Eksp., 2008, no. 3, pp. 175–176.Google Scholar
  15. Rietveld, M.T., Senior, A., Markkanen, J., and Westman, A., New capabilities of the upgraded EISCAT high-power HF facility, Radio Sci., 2016, vol. 51, no. 9, pp. 1533–1546. doi 10.1002/2016RS006093CrossRefGoogle Scholar
  16. Vinogradova, M.B., Rudenko, O.V., and Sukhorukov, A.P., Teoriya voln (Theory of Waves), Moscow: Nauka, 1979.Google Scholar
  17. Wait, J.R. and Spies, K.P., Characteristics of the Earth–ionosphere waveguide for VLF radio waves, National Bureau of Standards Technical Note, 1964.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. M. Lebed’
    • 1
  • Yu. V. Fedorenko
    • 1
  • N. F. Blagoveshchenskaya
    • 2
  • A. V. Larchenko
    • 1
  • V. F. Grigor’ev
    • 1
  • S. V. Pil’gaev
    • 1
  1. 1.Polar Geophysical InstituteApatityRussia
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations