Advertisement

Geomagnetism and Aeronomy

, Volume 56, Issue 7, pp 781–841 | Cite as

The Sun and heliosphere explorer – the Interhelioprobe mission

  • V. D. Kuznetsov
  • L. M. Zelenyi
  • I. V. ZimovetsEmail author
  • K. Anufreychik
  • V. Bezrukikh
  • I. V. Chulkov
  • A. A. Konovalov
  • G. A. Kotova
  • R. A. Kovrazhkin
  • D. Moiseenko
  • A. A. Petrukovich
  • A. Remizov
  • A. Shestakov
  • A. Skalsky
  • O. L. Vaisberg
  • M. I. Verigin
  • R. N. Zhuravlev
  • S. E. Andreevskyi
  • V. S. Dokukin
  • V. V. Fomichev
  • N. I. Lebedev
  • V. N. Obridko
  • V. P. Polyanskyi
  • V. A. Styazhkin
  • E. A. Rudenchik
  • V. M. Sinelnikov
  • Yu. D. Zhugzhda
  • A. P. Ryzhenko
  • A. V. Ivanov
  • A. V. Simonov
  • V. S. Dobrovolskyi
  • M. S. Konstantinov
  • S. V. Kuzin
  • S. A. Bogachev
  • A. A. Kholodilov
  • A. S. Kirichenko
  • E. N. Lavrentiev
  • A. A. Pertsov
  • A. A. Reva
  • S. V. Shestov
  • A. S. Ulyanov
  • M. I. Panasyuk
  • A. F. Iyudin
  • S. I. Svertilov
  • V. V. Bogomolov
  • V. I. Galkin
  • B. V. Marjin
  • O. V. Morozov
  • V. I. Osedlo
  • I. A. Rubinshtein
  • B. Ya. Scherbovsky
  • V. I. Tulupov
  • Yu. D. Kotov
  • V. N. Yurov
  • A. S. Glyanenko
  • A. V. Kochemasov
  • E. E. Lupar
  • I. V. Rubtsov
  • Yu. A. Trofimov
  • V. G. Tyshkevich
  • S. E. Ulin
  • A. S. Novikov
  • V. V. Dmitrenko
  • V. M. Grachev
  • V. N. Stekhanov
  • K. F. Vlasik
  • Z. M. Uteshev
  • I. V. Chernysheva
  • A. E. Shustov
  • D. V. Petrenko
  • R. L. Aptekar
  • V. A. Dergachev
  • S. V. Golenetskii
  • K. S. Gribovskyi
  • D. D. Frederiks
  • E. M. Kruglov
  • V. P. Lazutkov
  • V. V. Levedev
  • F. P. Oleinik
  • V. D. Palshin
  • A. I. Repin
  • M. I. Savchenko
  • D. V. Skorodumov
  • D. S. Svinkin
  • A. S. Tsvetkova
  • M. V. Ulanov
  • I. E. Kozhevatov
  • J. Sylwester
  • M. Siarkowski
  • J. Bąkała
  • Ż. Szaforz
  • M. Kowaliński
  • O. V. Dudnik
  • B. Lavraud
  • F. Hruška
  • I. Kolmasova
  • O. Santolik
  • J. Šimůnek
  • V. Truhlík
  • H.-U. Auster
  • M. Hilchenbach
  • Yu. Venedictov
  • G. Berghofer
Article

Abstract

The Interhelioprobe mission aims to investigate the inner heliosphere and the Sun from close distances (up to 0.3 AU) and from out of the ecliptic plane (up to 30°). In this paper we present the relevance of the mission and its main scientific objectives, describe the scientific payload, ballistic scenario and orbits of the spacecraft. Possibilities of scientific cooperation with other solar and heliospheric space missions are also mentioned.

Keywords

Sun heliosphere Interhelioprobe space mission solar physics heliospheric physics solar-terrestrial relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, L.W., Finch, M.L., Gilbreth, C.W., et al., The soft X-ray polychromator for the Solar Maximum Mission, Sol. Phys., 1980, vol. 65, pp. 53–71.CrossRefGoogle Scholar
  2. Akita, K., Tanaka, K., Watanabe, T., et al., Solar flare soft X-ray spectra from the Hinotori. 1: Iron line spectra and their time variations of seven X-class flares, Ann. Tokyo Astron. Obs., 1982, vol. 18, no. 4, pp. 237–338.Google Scholar
  3. Alexandrova, O., Saur, J., Lacombe, C., et al., Universality of solar-wind turbulent spectrum from MHD to electron scales, Phys. Rev. Lett., 2009, vol. 103, no. 16, id 165003.Google Scholar
  4. Antia, H.M. and Basu, S., Determining solar abundances using helioseismology, Astrophys. J., 2006, vol. 644, no. 2, pp. 1292–1298.CrossRefGoogle Scholar
  5. Aptekar, R.L., Frederiks, D.D., Golenetskii, S.V., et al., Konus-W gamma-ray burst experiment for the GGS wind spacecraft, Space Sci. Rev., 1995, vol. 71, nos. 1–4, pp. 265–272.CrossRefGoogle Scholar
  6. Aptekar, R.L., Golenetskii, S.V., Mazets, E.P., et al., Cosmic gamma-ray bursts and gamma repeaters studies with Ioffe institute Konus experiments, Phys.-Usp., 2010, vol. 53, no. 4, pp. 401–405.CrossRefGoogle Scholar
  7. Arghavani, M.R., Russell, C.T., Luhmann, J.G., et al., Interplanetary magnetic field enhancements in the solar wind: Statistical properties at 1 AU, Icarus, 1985, vol. 62, pp. 230–243.CrossRefGoogle Scholar
  8. Auster, H.U., Apathy, I., Berghofer, G., et al., ROMAP: Rosetta magnetometer and plasma monitor onboard the Rosetta lander, in ROSETTA: ESA’s Mißsion to the Origin of the Solar System, Schulz, R., Alexander, C., Boehnhardt, H., and Glaßmeier, K.-H., Eds., New York: Springer, 2009, pp. 701–719. doi 10.1007/978-0-387- 77518-0_19_8Google Scholar
  9. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., et al., Waves: The radio and plasma wave investigation on the wind spacecraft, Space Sci. Rev., 1995, vol. 71, nos. 1–4, pp. 231–263.CrossRefGoogle Scholar
  10. Bougeret, J.-L., Goetz, K., Kaiser, M.L., et al., S/WAVES: The radio and plasma wave investigation on the stereo mission, Space Sci. Rev., 2008, vol. 136, nos. 1–4, pp. 487–527.CrossRefGoogle Scholar
  11. Brueckner, G.E., Howard, R.A., Koomen, M.J., et al., The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 1995, vol. 162, nos. 1–2, pp. 357–402.CrossRefGoogle Scholar
  12. Cairns, I.H., Coherent radio emissions associated with solar system shocks, in The Sun, the Solar Wind, and the Heliosphere, Miralles, M.P. and Sánchez Almeida, J., Eds., Berlin: Springer, 2009, pp. 267–338.Google Scholar
  13. Carlson, C.W. and McFadden, J.P., Design and application of imaging plasma instruments, in Measurements Techniques in Space Plasmas: Particles, Pfaff, R.F., Borovsky, J.E., and Young, D.S., Eds., Washington, DC: AGU, 1998, pp. 125–140.CrossRefGoogle Scholar
  14. Chernov, G.P., Unusual absorption and emission bands in solar radio bursts: Ropes of fiber in the metric range, Astron. Lett., 2008, vol. 34, no. 7, pp. 486–499.CrossRefGoogle Scholar
  15. Chernov, G.P., Kaiser, M.L., Bougeret, J.-L., et al., Fine structure of solar radio bursts observed at decametric and hectometric waves, Sol. Phys., 2007, vol. 241, no. 1, pp. 145–169.CrossRefGoogle Scholar
  16. Chupp, E.L., Solar neutron observations and their relation to solar flare acceleration problems, Sol. Phys., 1988, vol. 118, no. 1, pp. 137–154.CrossRefGoogle Scholar
  17. Culhane, J.L., Hiei, E., Doschek, G.A., et al., The Bragg crystal spectrometer for Solar-A, Sol. Phys., 1991, vol. 136, no. 1, pp. 89–104.CrossRefGoogle Scholar
  18. Doschek, G.A., Solar instruments on the P78-1 spacecraft, Sol. Phys., 1983, vol. 86, no. 1, pp. 9–17.CrossRefGoogle Scholar
  19. Elokhin, A.P., Safonenko, V.A., Ulin, S.E., et al., The use of unmanned dose of the complex to determine the concentration pa-radionuclides in the atmosphere in terms of radiation accidents, Nucl. Meas. Inf. Technol., 2007, no. 3, pp. 42–59.Google Scholar
  20. Ermolli, I. and Matthes, K., Dudok de Wit, T., et al., Recent variability of the solar spectral irradiance and its impact on climate modeling, Atmos. Chem. Phys. Discuss., 2012, vol. 12, pp. 24557–24642.CrossRefGoogle Scholar
  21. Eyles, C.J., Harrison, R.A., Davis, C.J., et al., The heliospheric imagers onboard the stereo mission, Sol. Phys., 2009, vol. 254, no. 2, pp. 387–445.CrossRefGoogle Scholar
  22. Fitzenreiter, R.J., Fainberg, J., Weber, R.R., et al., Radio observations of interplanetary magnetic field structures out of the ecliptic, Sol. Phys., 1977, vol. 52, pp. 477–484.CrossRefGoogle Scholar
  23. Fröhlich, C., Andersen, B.N., Appourchaux, T., et al., First results from VIRGO the experiment for helioseismology and solar irradiance monitoring on SOHO, Sol. Phys., 1997, vol. 170, no. 1, pp. 1–25.CrossRefGoogle Scholar
  24. Glassmeier, K.-H., Auster, H.-U., Heyner, D., et al., The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter, Planet. Space Sci., 2010, vol. 58, nos. 1–2, pp. 287–299.CrossRefGoogle Scholar
  25. Gringauz, K.I., Bezrukikh, V.V., Ozerov, V.D., et al., A Study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second Soviet cosmic rocket, Sov. Phys.-Dokl., 1960, vol. 5, pp. 361–364.Google Scholar
  26. Grün, E., Krüger, H., and Landgraf, M., Cosmic dust, in The Heliosphere Near Solar Minimum. The Ulysses Perspective, Balogh, A., Marsden, R.G., and Smith, E.J., Eds., London: Springer, 2001, pp. 373–404.Google Scholar
  27. Horbury, T.S., Forman, M.A., Oughton, S., Spacecraft observations of solar wind turbulence: An overview, Plasma Phys. Controlled Fusion, 2005, vol. 47, no. 12B, pp. B703–B717.CrossRefGoogle Scholar
  28. Howard, R.A., Moses, J.D., Vourlidas, A., et al., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space Sci. Rev., 2008, vol. 136, nos. 1–4, pp. 67–115.CrossRefGoogle Scholar
  29. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., et al., The RHESSI imaging concept, Sol. Phys., 2002, vol. 210, pp. 61–86.CrossRefGoogle Scholar
  30. Kahler, S.W., Cliver, E.W., and Cane, H.V., Shock-associated kilometric radio emission and solar metric type IIbursts, Sol. Phys., 1989, vol. 120, no. 2, pp. 393–405.CrossRefGoogle Scholar
  31. Kaiser, M.L., The STEREO mission: An overview, Adv. Space Res., 2005, vol. 36, no. 8, pp. 1483–1488.CrossRefGoogle Scholar
  32. Korepanov, V. and Marusenkov, A., Flux-gate magnetometers design peculiarities, Surv. Geophys., 2012, vol. 33, no. 5, pp. 1059–1079.CrossRefGoogle Scholar
  33. Korepanov, V. and Pronenko, V., Induction magnetometers- design peculiarities, Sens. Transducers J., 2010, vol. 120, no. 9, pp. 92–106.Google Scholar
  34. Kosugi, T., Makishima, K., Murakami, T., et al., The hard X-ray telescope (HXT) for the SOLAR-A mission, Sol. Phys., 1991, vol. 136, pp. 17–36.CrossRefGoogle Scholar
  35. Kotov, Yu.D., High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS, Phys.-Usp., 2010, vol. 53, no. 6, pp. 619–631.CrossRefGoogle Scholar
  36. Kuznetsov, V.D., Solar and heliophysics space missions, Adv. Space Res., 2015, vol. 55, no. 3, pp. 879–885.CrossRefGoogle Scholar
  37. Kuznetsov, S.N., Kurt, V.G., Myagkova, I.N., et al., Gamma-ray emission and neutrons from solar flares detected by the SONG instrument in 2001–2004, Sol. Syst. Res., 2006, vol. 40, no. 2, pp. 104–110.CrossRefGoogle Scholar
  38. Laming, J.M., Non-WKB models of the First Ionization Potential effect: Implications for solar coronal heating and the coronal helium and neon abundances, Astrophys. J., 2009, vol. 695, no. 2, pp. 954–969.CrossRefGoogle Scholar
  39. Leamon, R.J., Smith, C.W., Ness, N.F., et al., Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, J. Geophys. Res., 1998, vol. 103, no. A3, pp. 4775–4787.CrossRefGoogle Scholar
  40. Leblanc, Y., Dulk, G.A., and Bougeret, J.-L., Tracing the electron density from the corona to 1au, Sol. Phys., 1998, vol. 183, no. 1, pp. 165–180.CrossRefGoogle Scholar
  41. Limousin, O., Lugiez, F., Gevin, O., et al., Caliste 256: A CdTe imaging spectrometer for space science with a 580 µm pixel pitch, Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 647, no. 1, pp. 46–54.CrossRefGoogle Scholar
  42. Lin, R.P., Dennis, B.R., Hurford, G.J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, vol. 210, pp 3–32.CrossRefGoogle Scholar
  43. Lingenfelter, R.E. and Ramaty, R., High energy nuclear reactions in solar flares, in High-Energy Nuclear Reactions in Astrophysics—A Collection of Articles, Shen, B.S.P., Ed., New York: Benjamin, 1967, p. 99.Google Scholar
  44. Mazets, E.P., Aptekar, R.L., Golenetskii, S.V., et al., Studies of cosmic gamma-ray bursts and soft gamma repeaters in the Russian–American Konus-Wind experiment, JETP Lett., 2012, vol. 96, no. 8, pp. 544–553.CrossRefGoogle Scholar
  45. Mazets, E.P., Aptekar, R.L., Golenetskii, S.V., et al., Study of solar flares and gamma-ray bursts in the Helicon experiment, in The Coronas-F Space Mission, Kuznetsov, V., Ed., Springer, 2014, pp. 393–403.CrossRefGoogle Scholar
  46. Michalowska, A., Gevin, O., Lemaire, O., et al., IDeF-X HD: A low power multi-gain CMOS ASIC for the readout of Cd(Zn)Te detectors, in IEEE Nuclear Science Symposium and Medical Imaging Conference, 2010, pp. 1556–1559.CrossRefGoogle Scholar
  47. Morrison, P., On gamma-ray astronomy, Nuovo Cim., 1958, vol. 7, no. 6, pp. 858–865.CrossRefGoogle Scholar
  48. Mueller, D., Marsden, R.G., St. Cyr, O.C., Gilbert, H.R., and the Solar Orbiter Team, Solar orbiter: Exploring the Sun–Heliosphere connections, Sol. Phys., 2013, vol. 285, nos. 1–2, pp. 25–70.CrossRefGoogle Scholar
  49. Oraevsky, V.N., Galeev, A.A., Kuznetsov, V.D., and Zelenyi, L.M., Solar Orbiter and Russian Aviation and Space Agency Interhelioprobe, in Solar Encounter. Proceedings of the First Solar Orbiter Workshop, 14–18 May 2001, Puerto de la Cruz, Tenerife, Spain, Battrick, B. and Sawaya-Lacoste, H., Eds., Noordwijk: ESA, 2001, pp. 95–108.Google Scholar
  50. Owocki, S.P., Holzer, T.E., and Hundhausen, A.J., The solar wind ionization state as a coronal temperature diagnostic, Astrophys. J., 1983, vol. 275, pp. 354–366.CrossRefGoogle Scholar
  51. Petrosyan, A., Balogh, A., Goldstein, M.L., et al., Turbulence in the solar atmosphere and solar wind, Space. Sci. Rev., 2010, vol. 156, nos. 1–4, pp. 135–238.CrossRefGoogle Scholar
  52. Pick, M. and Vilmer, N., Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun–Earth connection, Astron. Astrophys. Rev, 2008, vol. 16, pp. 1–153.CrossRefGoogle Scholar
  53. Pinkau, K., Die Messung solarer und atmosphärischer Neutronen, Z. Naturforsch., A: Phys. Sci., 1966, vol. 21, no. 12, pp. 2100–2101.Google Scholar
  54. Reiner, M., Kilometric type III radio bursts, electron beams, and interplanetary density structures, Space Sci. Rev., 2001, vol. 97, no. 1, pp. 129–139.CrossRefGoogle Scholar
  55. Reiner, M.J., Kaiser, M.L., Fainberg, J., and Stone, R.G., A new method for studying remote type IIradio emissions from coronal mass ejection-driven shocks, J. Geophys. Res., 1998, vol. 103, no. A12, pp. 29651–29664.CrossRefGoogle Scholar
  56. Reiner, M.J., Fainberg, J., Kaiser, M.L., and Bougeret, J.-L., A highly circularly polarized solar radio emission component observed at hectometric wavelengths, Sol. Phys., 2006, vol. 234, no. 2, pp. 301–324.CrossRefGoogle Scholar
  57. Rème, H., Aoustin, C., Bosqued, J.M., et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment, Ann. Geophys., 2001, vol. 19, no. 10, pp. 1303–1354.CrossRefGoogle Scholar
  58. Reva, A., Ulyanov, A., Bogachev, S., and Kuzin, S., Initiation and early evolution of the coronal mass ejection on 2009 May 13 from extreme-ultraviolet and white-light observations, Astrophys. J., 2014, vol. 793, no. 2, id 140.Google Scholar
  59. Rice, J.E., Reinke, M.L., Ashbourn, J.M.A., et al., X-ray observations of Ca19+, Ca18+ and satellites from Alcator C-Mod tokamak plasmas, J. Phys. B: At., Mol. Opt. Phys., 2014, vol. 47, no. 7, id 075701.Google Scholar
  60. Russell, C.T. and Jian, L., Flows and obstacles in the solar wind, Adv. Space Res., 2008, vol. 41, no. 8, 1177–1187.CrossRefGoogle Scholar
  61. Sauvaud, J.-A., Koperski, P., Beutier, T., et al., The INTERBALL-Tail ELECTRON experiment: Initial results on the low-latitude boundary layer of the dawn magnetosphere, Ann. Geophys., 1997, vol. 15, no. 5, pp. 587–595.CrossRefGoogle Scholar
  62. Sauvaud, J.-A., Larson, D., Aoustin, C., et al., The IMPACT solar wind electron analyzer (SWEA), Space Sci. Rev., 2008, vol. 136, pp. 227–239.CrossRefGoogle Scholar
  63. Schwenn, R. and Marsch, E., Physics of the Inner Heliosphere. 1. Large-Scale Phenomena, Series: Physics and Chemistry in Space, Vol. 20, Berlin: Springer, 1990.CrossRefGoogle Scholar
  64. Schwenn, R. and Marsch, E., Physics of the Inner Heliosphere. 2. Particles, Waves and Turbulence, Series: Physics and Chemistry in Space, Vol. 21, Berlin: Springer, 1991.Google Scholar
  65. Serenelli, A.M., Basu, S., Ferguson, J.W., and Asplund, M., New solar composition: The problem with solar models revisited, Astrophys. J., 2009, vol. 705, no. 2, pp. L123–L127.CrossRefGoogle Scholar
  66. Share, G.H., Nolan, P.L., Forrest, D.J., et al., Measurements of the 2.223 MeV neutron capture line in solar flares, Bull. Am. Astron. Soc., 1982, vol. 14, p. 875.Google Scholar
  67. Share, G.H., Murphy, R.J., Tylka, A.J., et al., Physics of solar neutron production: Questionable detection of neutrons from the 31 December 2007 flare, J. Geophys. Res., 2011, vol. 116, A03102.CrossRefGoogle Scholar
  68. Siarkowski, M., Sylwester, J., Bakala, J., et al., ChemiX: A Bragg crystal spectrometer for the Interhelioprobe interplanetary mission, Exp. Astron., 2016, vol. 41, no. 3, pp. 327–350.CrossRefGoogle Scholar
  69. Smirnov, V., Vaisberg, O., and Anisimov, S., An attempt to evaluate the structure of cometary dust particles, Astron. Astrophys., 1987, vol. 187, pp. 774–778.Google Scholar
  70. Sperverlage, K., Neubauer, F.M., Baumgärtel, K., et al., Magnetic holes in the solar wind between 0.34 AU and 17 AU, Nonlinear Processes Geophys., 2000, vol. 7, pp. 191–200.CrossRefGoogle Scholar
  71. Srama, R., Altobelli, N., de Kam, J., et al., DUNE-eXpress dust astronomy with ConeXpress, Adv. Space Res., 2006, vol. 38, no. 9, pp. 2093–2101.CrossRefGoogle Scholar
  72. Sylwester, J., Gaicki, I., Kowalinski, M., et al., Resik: A bent crystal X-ray spectrometer for studies of solar coronal plasma composition, Sol. Phys., 2005, vol. 226, no. 1, pp. 45–72.CrossRefGoogle Scholar
  73. Sylwester, J., Kordylewski, Z., Plocieniak, S., et al., X-ray flare spectra from the DIOGENESS spectrometer and its concept applied to ChemiX on the Interhelioprobe spacecraft, Sol. Phys., 2015, vol. 290, no. 12, pp. 3683–3697.CrossRefGoogle Scholar
  74. Šafránková, J., Zastenker, G., Nemecek, Z., et al., Small scale observation of magnetopause motion: Preliminary results of the INTERBALL project, Ann. Geophys., 1997, vol. 15, no. 5, pp. 562–569.CrossRefGoogle Scholar
  75. Šafránková, J., Nemecek, Z., Prech, L., et al., Fast Solar Wind Monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, no. 1, pp. 165–182.CrossRefGoogle Scholar
  76. Testa, P., Element abundances in X-ray emitting plasmas in stars, Space Sci. Rev., 2010, vol. 157, nos. 1–4, pp. 37–55.CrossRefGoogle Scholar
  77. Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al., The solar optical telescope for the Hinode mission: An overview, Sol. Phys., 2008, vol. 249, pp. 167–196.CrossRefGoogle Scholar
  78. Ulin, S.E., Dmitrenko, V.V., Grachev, V.M., et al., Gamma detectors based on high pressure xenon: Their development and application, in Hard X-Ray and Gamma-Ray Detectors Physics VI.Proc. SPIE-5540, 2004, pp. 248–256.CrossRefGoogle Scholar
  79. Vaisberg, O.L., Gorn L.S., Ermolaev, Yu.I., et al., Experiment on the diagnostics of interplanetary and magnetospheric plasmas via the Venera 11 and Venera 12 probes and the Prognoz 7 satellite, Kosm. Issled., 1979, vol. 17, no. 5, pp. 780–792.Google Scholar
  80. Vaisberg, O., Smirnov, V., Omelchenko, A., et al., Spatial and mass distribution of low-mass dust particles (m < 10–10 g) in comet P/Halley’s coma, Astron. Astrophys., 1987, vol. 187, pp. 753–760.Google Scholar
  81. Vasylinuas, V.M., Deep space plasma measurements, in Methods of Experimental Physics, Griem, H.R. and Lovberg, R.H., Eds., New York: Academic, 1971, vol. 9, part B, pp. 49–88.CrossRefGoogle Scholar
  82. Verigin, M.I., Remizov, A.P., Kotova, G.A., et al., Exploration of the solar wind by HELION experiment of Interhelioprobe mission, in Interhelioprobe Project, Workshop Proceedings, Tarusa, 11–13 May 2011, Kuznetsov, V.D., Ed., Moscow, 2012, pp. 132–138.Google Scholar
  83. Vlasik, K.F., Grachev, V.M., Dmitrenko, V.V., et al., The automated system based on xenon gamma-spectrometers for monitoring of gaseous radioactive emissions of a nuclear reactor, Nucl. Meas. Inf. Technol., 2004, vol. 2, pp. 45–53.Google Scholar
  84. Zastenker, G.N., Ermolaev, Yu.I., Pintér, Š., et al., Observations of the solar wind with high temporal resolution, Kosm. Issled., 1982, vol. 20, no. 6, pp. 900–906.Google Scholar
  85. Zertsalov, A.A., Vaisberg, O.L., and Temnyi, V.V., Characteristics of the proton and alpha-particle components of the solar wind following the passage of interplanetary shock waves from observations on the Prognoz satellite on May 15 and 30, 1972, Kosm. Issled., 1976, vol. 14, no. 2, pp. 234–240.Google Scholar
  86. Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., and White, S.M., On the temporal relationship between coronal mass ejections and flares, Astrophys. J., 2001, vol. 559, no. 1, pp. 452–462.CrossRefGoogle Scholar
  87. Zhugzhda, Yu.D., Analytical signal as a tool for studying solar p-modes, Astron. Lett., 2006, vol. 32, no. 5, pp. 329–343.CrossRefGoogle Scholar
  88. Zhugzhda, Yu.D. and Lebedev, N.I., Darkening and visibility functions for the global five-minute oscillations, Astron. Lett., 2009, vol. 35, no. 7, pp. 547–560.CrossRefGoogle Scholar
  89. Zhugzhda, Yu.D., Kuznetsov, V.D., and Lebedev, N.I., Brightness fluctuations and global oscillations of the Sun (DIFOS experiment), in The CORONAS-F Space Mission, Kuznetsov, V., Ed., Springer, 2014, pp. 27–54.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. D. Kuznetsov
    • 1
  • L. M. Zelenyi
    • 2
  • I. V. Zimovets
    • 2
    Email author
  • K. Anufreychik
    • 2
  • V. Bezrukikh
    • 2
  • I. V. Chulkov
    • 2
  • A. A. Konovalov
    • 2
  • G. A. Kotova
    • 2
  • R. A. Kovrazhkin
    • 2
  • D. Moiseenko
    • 2
  • A. A. Petrukovich
    • 2
  • A. Remizov
    • 2
  • A. Shestakov
    • 2
  • A. Skalsky
    • 2
  • O. L. Vaisberg
    • 2
  • M. I. Verigin
    • 2
  • R. N. Zhuravlev
    • 2
  • S. E. Andreevskyi
    • 1
  • V. S. Dokukin
    • 1
  • V. V. Fomichev
    • 1
  • N. I. Lebedev
    • 1
  • V. N. Obridko
    • 1
  • V. P. Polyanskyi
    • 1
  • V. A. Styazhkin
    • 1
  • E. A. Rudenchik
    • 1
  • V. M. Sinelnikov
    • 1
  • Yu. D. Zhugzhda
    • 1
  • A. P. Ryzhenko
    • 3
  • A. V. Ivanov
    • 3
  • A. V. Simonov
    • 3
  • V. S. Dobrovolskyi
    • 3
  • M. S. Konstantinov
    • 4
  • S. V. Kuzin
    • 5
  • S. A. Bogachev
    • 5
  • A. A. Kholodilov
    • 5
  • A. S. Kirichenko
    • 5
  • E. N. Lavrentiev
    • 5
  • A. A. Pertsov
    • 5
  • A. A. Reva
    • 5
  • S. V. Shestov
    • 5
  • A. S. Ulyanov
    • 5
  • M. I. Panasyuk
    • 6
  • A. F. Iyudin
    • 6
  • S. I. Svertilov
    • 6
    • 7
  • V. V. Bogomolov
    • 7
  • V. I. Galkin
    • 7
  • B. V. Marjin
    • 7
  • O. V. Morozov
    • 7
  • V. I. Osedlo
    • 7
  • I. A. Rubinshtein
    • 7
  • B. Ya. Scherbovsky
    • 7
  • V. I. Tulupov
    • 7
  • Yu. D. Kotov
    • 7
  • V. N. Yurov
    • 8
  • A. S. Glyanenko
    • 8
  • A. V. Kochemasov
    • 8
  • E. E. Lupar
    • 8
  • I. V. Rubtsov
    • 8
  • Yu. A. Trofimov
    • 8
  • V. G. Tyshkevich
    • 8
  • S. E. Ulin
    • 8
  • A. S. Novikov
    • 8
  • V. V. Dmitrenko
    • 8
  • V. M. Grachev
    • 8
  • V. N. Stekhanov
    • 8
  • K. F. Vlasik
    • 8
  • Z. M. Uteshev
    • 8
  • I. V. Chernysheva
    • 8
  • A. E. Shustov
    • 8
  • D. V. Petrenko
    • 8
  • R. L. Aptekar
    • 9
  • V. A. Dergachev
    • 9
  • S. V. Golenetskii
    • 9
  • K. S. Gribovskyi
    • 9
  • D. D. Frederiks
    • 9
  • E. M. Kruglov
    • 9
  • V. P. Lazutkov
    • 9
  • V. V. Levedev
    • 9
  • F. P. Oleinik
    • 9
  • V. D. Palshin
    • 9
  • A. I. Repin
    • 9
  • M. I. Savchenko
    • 9
  • D. V. Skorodumov
    • 9
  • D. S. Svinkin
    • 9
  • A. S. Tsvetkova
    • 9
  • M. V. Ulanov
    • 9
  • I. E. Kozhevatov
    • 10
  • J. Sylwester
    • 11
  • M. Siarkowski
    • 11
  • J. Bąkała
    • 11
  • Ż. Szaforz
    • 11
  • M. Kowaliński
    • 11
  • O. V. Dudnik
    • 12
  • B. Lavraud
    • 13
  • F. Hruška
    • 14
  • I. Kolmasova
    • 14
  • O. Santolik
    • 14
  • J. Šimůnek
    • 14
  • V. Truhlík
    • 14
  • H.-U. Auster
    • 15
  • M. Hilchenbach
    • 16
  • Yu. Venedictov
    • 17
  • G. Berghofer
    • 18
  1. 1.Pushkov Institute of Terrestrial MagnetismIonosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)Troitsk, MoscowRussia
  2. 2.Space Research Institute (IKI)Russian Academy of Sciences, Profsoyuznaya ul. 84/32MoscowRussia
  3. 3.Lavochkin AssociationKhimki, Moscow oblastRussia
  4. 4.Research Institute of Applied Mechanics and Electrodynamics (RIAME)Moscow Aviation Institute (National Research University)MoscowRussia
  5. 5.Lebedev Physical Institute (LPI) of the Russian Academy of SciencesMoscowRussia
  6. 6.Skobeltsyn Institute of Nuclear PhysicsMoscow State University (SINP MSU)MoscowRussia
  7. 7.Faculty of PhysicsMoscow State UniversityMoscowRussia
  8. 8.National Research Nuclear University (NRNU) “MEPhI” (Moscow Engineering Physics Institute)MoscowRussia
  9. 9.Ioffe Physical Technical Institute (IPTI) of the Russian Academy of SciencesSt. PetersburgRussia
  10. 10.Radiophysical Research Institute (NIRFI)Nizhny NovgorodRussia
  11. 11.Space Research Centre, Polish Academy of SciencesSolar Physics Division (CBK PAN ZFS)WroclawPoland
  12. 12.Institute of Radio AstronomyNational Academy of Sciences of Ukraine (IRA NASU)KharkivUkraine
  13. 13.Institute de Recherche en Astrophysique et Planetologie (IRAP)Toulouse Cedex 4France
  14. 14.Institute of Atmosheric Physics (IAP)Academy of Sciences of the Czech Republic, Bocni II 1401PragueCzech Republic
  15. 15.Institute for Geophysics and Extraterrrestrial Physics (IGEP)Techische Universitat Braunschweig (TUB)BraunschweigGermany
  16. 16.Max Planck Institute for Solar System Research (MPS)GöttingenGermany
  17. 17.Odessa National Polytechnic University (ONPU)OdessaUkraine
  18. 18.Space Research Institute (IWF)Austrian Academy of SciencesGrazAustria

Personalised recommendations