Geomagnetism and Aeronomy

, Volume 56, Issue 2, pp 219–228 | Cite as

Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite

  • S. V. VoeykovEmail author
  • O. I. Berngardt
  • N. V. Shestakov


The results of an analysis of the ionospheric effects accompanying fall of the Chelyabinsk meteorite on February 15, 2013 are presented using a method of calculating the index of the disturbance of total electron content vertical variations (Wtec) according to data from the GPS receiver network. A substantial increase (by a factor of 2–3) in the Wtec index with a duration of ~1.5 h was observed in the studied region after the main height explosion accompanying the meteorite fall at 0320 UT. The ionospheric response in Wtec was most significant statistically registered at the radio rays “receiver–satellite” for the GPS located southward from the place of explosion.


Root Mean Square Total Electron Content Ionospheric Disturbance Ionospheric Effect Total Electron Content Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afraimovich, E.L. and Perevalova, N.P., GPS-monitoring verkhnei atmosfery Zemli (GPS-Monitoring of the Earth’s Upper Atmosphere), Irkutsk: GU NTs RVKh VSNTs SORAMN, 2006.Google Scholar
  2. Berngardt, O.I., Dobrynina, A.A., Zherebtsov, G.A., Mikhalev, A.V., Perevalova, N.P., Ratovskii, K.G., Rakhmatulin, R.A., San’kov, V.A., and Sorokin, A.G., Geophysical phenomena accompanying the Chelyabinsk meteoroid impact, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 945–947.CrossRefGoogle Scholar
  3. Chernogor, L.F., Geomagnetic field effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 613–624.CrossRefGoogle Scholar
  4. Chernogor, L.F., Ionospheric effects of the Chelyabinsk meteoroid, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 3, pp. 353–368.CrossRefGoogle Scholar
  5. Givishvili, G.V., Leshchenko, L.N., Alpatov, V.V., Grigor’eva, S.A., Zhuravlev, S.V., Kuznetsov, V.D., Kusonskii, O.A., Lapshin, V.B., and Rybakov, M.V., Ionospheric effects induced by the Chelyabinsk meteor, Sol. Syst. Res., 2013, vol. 47, no. 4, pp. 280–287.CrossRefGoogle Scholar
  6. Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M., and Shalimov, S.L., The Chelyabinsk meteorite: Ionospheric response based on GPS measurements, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 948–952.CrossRefGoogle Scholar
  7. Gor’kavyi, N.N., Taidakova, T.A., Provornikova, E.A., Gor’kavyi, I.N., and Akhmetvaleev, M.M., Aerosol plume after the Chelyabinsk bolide, Sol. Syst. Res., vol. 47, no. 4, pp. 275–279.Google Scholar
  8. Le Pichon, A., Ceranna, L., Pilger, C., Mialle, P., Brown, D., Herry, P., and Brachet, N., The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors, Geophys. Res. Lett., 2013, vol. 40, pp. 3732–3737. doi 10.1002/grl.50619CrossRefGoogle Scholar
  9. Kutelev, K.A. and Berngardt, O.I., Mid-scale wave disturbances in the ionospheric F-layer during two hours after the Chelyabinsk meteorite fall according to EKB radar observations, Meteorit Chelyabinsk—god na Zemle: Materialy Vserossiiskoi nauch. konf (The Chelyabinsk Meteorite—A Year on the Earth: Proceedings of the All-Russian Scientific Conference), Chelyabinsk, 2014). pp. 171–181.Google Scholar
  10. Perevalova, N.P., Voeikov, S.V., Yasyukevich, Yu.V., Ishin, A.B., Voeikova, E.S., and San’kov, V.A., Investigation of ionospheric disturbances caused by the March 11, 2011 earthquake in Japan according to GEONET data, Sovr. Probl. Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 3, pp. 172–180.Google Scholar
  11. Perevalova, N.P., Shestakov, N.V., Zhupityaeva, A.S., Yasyukevich, Yu.V., Voeikov, S.V., and Kutelev, K.A., Variations in the total electron content in the ionosphere during the fall and explosion of the Chelyabinsk meteoroid, Meteorit Chelyabinsk—god na Zemle: Materialy Vserossiiskoi nauch. konf (The Chelyabinsk Meteorite—A Year on the Earth: Proceedings of the AllRussian Scientific Conference), Chelyabinsk, 2014). pp. 182–190.Google Scholar
  12. Perevalova N.P., Shestakov N.V., Voeykov S.V., Takahashi H., and Guojie, M., Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations, Geophys. Res. Lett., 2015, vol. 42, no. 16, pp. 6535–6543.CrossRefGoogle Scholar
  13. Popova, O.P., Jenniskens, P., Emel’yanenko, V., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, 2013. http://sciencesciencemag. org/content/early/2013/11/06/science.1242642.Google Scholar
  14. Tauzin, B., Debayle, E., and Quantin, C., Seismo-acoustic coupling induced by the breakup of the 15 Feb 2013 Chelyabinsk Meteor, Geophys. Res. Lett., 2013, vol. 40. no. 14, pp. 3522–3526. doi 10.1002/grl.50683CrossRefGoogle Scholar
  15. Tertyshnikov, A.V., Alpatov, V.V., Glukhov, Ya.V., Permi nova, E.S., and Davidenko, D.V., Regional ionospheric disturbances and positioning errors by a ground-based navigation receiver at the explosion of the Chelyabinsk (Chebarkul’) meteoroid of February 15, 2013, Geliogeofiz. Issled., 2013, no. 4, pp. 16–23.Google Scholar
  16. Yang, Yu-M., Komjathy, A., Langley, R.B., Vergados, P., Butala, M.D., and Mannucci, A.J., The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements, Radio Sci., vol. 49, pp. 341–350. doi 10.1002/2013RS005344Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Voeykov
    • 1
    Email author
  • O. I. Berngardt
    • 1
  • N. V. Shestakov
    • 2
    • 3
  1. 1.Institute of Solar–Terrestrial Physics, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Far East Federal UniversityVladivostokRussia
  3. 3.Institute of Applied Mathematics, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations