Geomagnetism and Aeronomy

, Volume 55, Issue 2, pp 235–245 | Cite as

Comparison of electron concentrations in the ionospheric E-layer maximum in spring conditions obtained by calculations and Moscow ionosonde measurements

  • A. V. PavlovEmail author
  • N. M. Pavlova


The electron concentrations in the ionospheric E-layer maximum NmE, as measured by the Moscow ionosonde, are compared with the results of theoretical calculations of NmE for geomagnetically quiet conditions at low solar activity on April 1, 1986, and April 6, 1996, moderate solar activity on April 9, 1978, and April 6, 1998, and high solar activity on April 20, 1980, and April 15, 1991. On the basis of this comparison, a correction of the model flux of solar X-ray radiation is proposed. The discovered variability of the correction factors manifests the influence of solar X-ray radiation flux variations on NmE variability. The dependence of the influence of the neutral constituents ionization by photoelectrons on NmE on the solar activity level is studied.


Solar Activity Radiation Flux Ionospheric Model High Solar Activity Solar Local Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, B. and Thorne, R.M., Modeling energetic electron precipitation near the South Atlantic anomaly, J. Geophys. Res., 1999, vol. 104, no. 4, p. 7037–7044.CrossRefGoogle Scholar
  2. Allan, M., Measurement of absolute differential cross sections for vibrational excitation of O2 by electron impact, J. Phys. B, 1995, vol. 28, no. 23, p. 5163–5175.CrossRefGoogle Scholar
  3. Amatucci, W.E., Schuck, P.W., Walker, D.N., Kintner, P.M., Powell, S., Holback, B., and Leonhardt, D., Contamination-free sounding rocket Langmuir probe, Rev. Sci. Instrum., 2001, vol. 72, no. 4, p. 2052–2057.CrossRefGoogle Scholar
  4. D’Arcy, R.J. and Sayers, J., Concerning the electron temperature discrepancy between in situ and remote probes in the E region, Planet. Space Sci., 1974, vol. 22, no. 6, pp. 961–966.CrossRefGoogle Scholar
  5. Brasseur, G.P. and Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Berlin: Springer, 2005.Google Scholar
  6. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1988.Google Scholar
  7. Fennelly, J.A. and Torr, D.G., Photoionization and photoabsorption cross sections of O, N2, O2, and N for aeronomic calculations, Atom. Data Nucl. Da., 1992, vol. 51, no. 2, pp. 321–363.CrossRefGoogle Scholar
  8. Gallagher, J.W., Brion, C.E., Samson, J.A.R., and Langhoff, P.W., Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes, J. Chem. Ref. Data, 1988, vol. 17, no. 1, pp. 9–153.CrossRefGoogle Scholar
  9. Gauchi, U., Integral veroyatnosti i integraly Frenelya/Spravochnik po spetsial’nym funktsiyam (Probability Integrals and Fresnel Integrals), Moscow: Nauka, 1979.Google Scholar
  10. Gupta, S.P., Expansion of plasma in the wake region of moving rockets-Evidence of enhanced electron temperature, Adv Space Res., 1988, vol. 8, no. 1, pp. 225–228.CrossRefGoogle Scholar
  11. Henke, B.L., Gullikson, E.M., and Davis, J.C., X-Ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92, Atom. Data Nucl. Da., 1993, vol. 54, no. 2, pp. 181–342.CrossRefGoogle Scholar
  12. Heroux, L. and Higgins, J.E., Summary of full-disk solar fluxes between 250 and 1940 A, J. Geophys. Res., 1977, vol. 82, no. 22, pp. 3307–3310.CrossRefGoogle Scholar
  13. Heroux, L., Cohen, M., and Higgins, J.E., Electron densities between 110 and 300 km derived from solar EUV fluxes of August 23, 1972, J. Geophys. Res., 1974, vol. 79, no. 34, pp. 5237–5244.CrossRefGoogle Scholar
  14. Huestis, D.L., Accurate evaluation of the Chapman function for atmospheric attenuation, J. Quant. Spectrosc. Rad. Transf., 2001, vol. 69, no. 6, pp. 709–721.CrossRefGoogle Scholar
  15. Itikawa, Y., Cross sections for electron collisions with oxygen molecules, J. Phys. Chem. Ref. Data, 2009, vol. 38, no. 1, pp. 1–20.CrossRefGoogle Scholar
  16. Kashirin, A.I., Photoionization in the nighttime ionosphere, Geomagn. Aeron., 1986, vol. 26, no. 4, pp. 563–568.Google Scholar
  17. Krinberg, I.A., Kinetika elektronov v ionosfere i plazmosfere Zemli (Kinetics of Electrons in the Ionosphere and Plasmaspehere of the Earth), Moscow: Nauka, 1978.Google Scholar
  18. Kurihara, J., Oyama, K.-I., Suzuki, K., and Iwagami, N., Vibrational rotational temperature measurement of N2 in the lower thermosphere by the rocket experiment, Adv. Space Res., 2003, vol. 32, no. 5, pp. 725–729.CrossRefGoogle Scholar
  19. Manson, J.E., The solar extreme ultraviolet between 30 and 205 A on November 9, 1971 compared with previous measurements in this spectral region, J. Geophys. Res., 1976, vol. 81, no. 10, pp. 1629–1635.CrossRefGoogle Scholar
  20. Margot-Chaker, J. and McNamara, A.G., Comparative study of Langmuir probe characteristics in different ionospheric conditions, Plan. Space Sci., 1984, vol. 32, no. 11, pp. 1427–1437.CrossRefGoogle Scholar
  21. Marov, M.Ya. and Kolesnichenko, A.V., Vvedenie v planetnuyu aeronomiyu (Introduction into the Planetary Aeronomy), Moscow: Nauka, 1987.Google Scholar
  22. Marsh, D.R., Garcia, R.R., Kinnison, D.E., Boville, B.A., Sassi, F., Solomon, S.C., and Matthes, K., Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 2007, vol. 112, no. 23, P. 2330. doi 10.1029/2006JD00836Google Scholar
  23. Meier, R.R., McLaughlin, B.M., Warren, H.P., and Bishop, J., Atomic oxygen photoionization rates computed with high resolution spectral cross sections and solar fluxes, Geophys Res. Lett., 2007, vol. 34, no. 1, P. L01104. doi 10.1029/2006GL028484CrossRefGoogle Scholar
  24. Morozov, S.K. and Krasitskii, O.P., Standartnaya programma dlya resheniya raznostnymi metodami kraevoi zadachi dlya sistemy differentsial’nykh uravnenii v chastnykh proizvodnykh/Algoritmy i programmy. Informatsionnyi byulleten’ (Standard Program for solution by residual methods of the boundary problem for a system of differential equations in partial derivatives/Algorithms and programs. Information Bulletin), Moscow: Gosudarstvennyi fond algoritmov i programm SSSR. 1979.Google Scholar
  25. Oyama, K.-I., In situ measurements of Te in the lower ionosphere-a review, Adv. Space Res., 2000, vol. 26, no. 8, pp. 1231–1240.CrossRefGoogle Scholar
  26. Oyama, K.-I., Shimoyama, M., Liu, J.Y., and Cheng, C.Z., Possible interaction between thermal electrons and vibrationally excited N2 in the lower E region, Ann. Geophysicae, 2011, vol. 29, no. 3, pp. 583–590.CrossRefGoogle Scholar
  27. Pavlov, A.V., Binary coefficients of molecular diffusion of neutral constituents of the upper atmospheres of the Earth, Mars and Venus, Kosm. Issled., 1981, vol. 19, no. 1, pp. 82–86.Google Scholar
  28. Pavlov, A.V. The role of vibrationally excited oxygen and nitrogen in the D and E regions of the ionosphere, Ann. Geophysicae, 1994, vol. 12, no. 10, pp. 1085–1090.CrossRefGoogle Scholar
  29. Pavlov, A.V., New electron energy transfer rates for vibrational excitation of N2, Ann. Geophysicae, 1998a, vol. 16, no. 2, pp. 176–182.Google Scholar
  30. Pavlov, A.V., New electron energy transfer and cooling rates by excitation of O2, Ann. Geophysicae, 1998b, vol. 16, no. 8, pp. 1007–1013.Google Scholar
  31. Pavlov, A.V. Hydrodynamical description of the ionospheric plasma, Entsiklopediya Nizkotemperaturnoy plasmy. Ser. B. T. 1-3 Ionosphernaya Plasma (Encyclopedia of the Low-Temperature Plasma. Ser. C. Vol. 1-3 Ionospheric Plasma). Part 1. Moscow: YANUS-K, 2008.Google Scholar
  32. Pavlov, A.V., Vibrationally excited N2 and O2 in the upper atmosphere (a review), Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 2, pp. 143–169.CrossRefGoogle Scholar
  33. Pavlov, A.V. Ion chemistry of the ionosphere at the E- and F-region altitudes: A review, Surv. Geophys., 2012, vol. 33, no. 5, pp. 1133–1172. doi 10.10007/s10712-012-9189-8CrossRefGoogle Scholar
  34. Pavlov, A.V., Photochemistry of ions at D-region altitudes of the ionosphere: A Review, Surv. Geophys., 2014, vol. 35, no. 2, pp. 259–334. doi 10.1007/s10712-013-9253-zCrossRefGoogle Scholar
  35. Pavlov, A.V. and Berrington, K.A., Cooling rate of thermal electrons by electron impact excitation of fine structure levels of atomic oxygen, Ann. Geophysicae, 1999, vol. 17, no. 7, pp. 919–924.CrossRefGoogle Scholar
  36. Pavlov, A.V. and Pavlova, N.M., On the influence of the solar radiation refraction on the solar zenith angle and sunrise and sunset times in the atmosphere, Geomagn. and Aeron. (Engl. Transl), 2010, vol. 50, no. 2, pp. 219–224.CrossRefGoogle Scholar
  37. Pavlov, A.V. and Pavlova, N.M., Comparison of modeled electron densities and electron and ion temperatures with Aresibo observations during undisturbed and geomagnetic storm periods of 7–11 September 2005, J. Geophys. Res., 2011, vol. 116, no. 3, p. A03301. doi 10.1029/2010JA016067Google Scholar
  38. Pavlov, A.V. and Pavlova, N.M., Comparison of NmE measured by the Boulder ionosonde with model predictions near the spring equinox, J. Atmos. Solar-Terr. Phys., 2013, vol. 102, no. 1., pp. 39–47.CrossRefGoogle Scholar
  39. Pavlov, A.V., Pavlova, N.M., and Makarenko, S.F., A statistical study of the mid-latitude NmF2 winter anomaly, Adv. Space Res., 2010, vol. 45, no. 3, pp. 374–385.CrossRefGoogle Scholar
  40. Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues, J. Geophys. Res., 2002, vol. 107, no. 12, p. 1468. doi 10.1029/2002JA009430CrossRefGoogle Scholar
  41. Qian, L., Solomon, S.C., and Kane, T.J., Seasonal variation of thermospheric density and composition, J. Geophys. Res., 2009, vol. 114, no. 1, P. A01312. doi 10.1029/2008JA01364Google Scholar
  42. Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomical calculations, J. Geophys. Res., 1994, vol. 99, no. 5, pp. 8981–8986.CrossRefGoogle Scholar
  43. Schunk, R.W. and Nagy, A.F., Ionospheres. Physics, plasma physics, and chemistry, Cambridge: University Press, 2009.CrossRefGoogle Scholar
  44. Shimazaki, T., Effective eddy diffusion coefficient and atmospheric composition in the lower thermosphere, J. Atmos. Terr. Phys., 1971, vol. 33, no. 9, pp. 1383–1401.CrossRefGoogle Scholar
  45. Smith, F.L. and Smith, C., Numerical evaluation of Chapman’s grazing incidence integral ch(X,χ), J. Geophys. Res., 1972, vol. 77, no. 19, pp. 3592–3597.CrossRefGoogle Scholar
  46. Smithtro, C.G. and Solomon, S.C., An improved parameterization of thermal electron heating by photoelectrons, with application to an X17 flare, J. Geophys. Res., 2008, vol. 113, no. 8, p. A08307. doi 10.1029/2008JA013077Google Scholar
  47. Solomon, S.C., Numerical models of the E-region ionosphere, Adv. Space Res., 2006, vol. 37, no. 5, p. 1031–1037.CrossRefGoogle Scholar
  48. Solomon, S.C. and Qian, L., Solar extreme-ultraviolet irradiance for general circulation models, J. Geophys. Res., 2005, vol. 110, no. 10, p. A10306. doi 10.1029/2005JA011160CrossRefGoogle Scholar
  49. Stolte, W.C., He, Z.X., Cutler, J.N., Lu, Y., and Samson, J.A.R., Dissociative photoionization cross sections of N2 and O2 from 100 to 800 eV, Atom. Data Nucl. Da., 1998, vol. 69, no. 1, pp. 171–179.CrossRefGoogle Scholar
  50. Tabata, T., Shirai, T., Sataka, M., and Kubo, H., Analytic cross sections for electron impact collisions with nitrogen molecules, Atom. Data Nucl. Da., 2006, vol. 92, no. 3, pp. 375–406.CrossRefGoogle Scholar
  51. Titheridge, J.E., Model results for the ionospheric E region: solar and seasonal changes, Ann. Geophysicue, 1997, vol. 15, no. 1, pp. 63–78.CrossRefGoogle Scholar
  52. Vampola, A.L. and Gorney, D.J., Electron energy deposition in the middle atmosphere, J. Geophys. Res., 1983, vol. 88, no. 8, pp. 6267–6274.CrossRefGoogle Scholar
  53. Woods, T. and Rottman, G., Solar ultraviolet variability over time periods of aeronomic interest, Atmospheres in the Solar System: Comparative Aeronomy/Geophys. Monogr. Ser., Washington: AGU, vol. 130, pp. 221–234, 2002.CrossRefGoogle Scholar
  54. Woods, T.N., Bailey, S.M., Peterson, W.K., Solomon, S.C., Warren, H.P., Eparvier, F.G., Garcia, H., Carlson, C.W., and McFadden, J.P., Solar extreme ultraviolet variability of the X-class flare on 21 April 2002 and the terrestrial photoelectron response, Space Weather, 2003, vol. 1, no. 1, pp. 1001–1007.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave PropagationRussian Academy of Sciences (IZMIRAN)Troitsk, MoscowRussia

Personalised recommendations