Geomagnetism and Aeronomy

, Volume 55, Issue 3, pp 333–343 | Cite as

The effect of particles and electromagnetic waves on vortex structures in the atmosphere and the ionosphere

  • N. I. Izhovkina


The formation of vortex structures in an inhomogeneous gyrotropic atmosphere was stochastically determined. Atmospheric gyrotropy is induced by the Coriolis force acting as the Earth rotates and the motion of charged particles in the geomagnetic field. Vortices of a plasma nature are observed in the atmosphere. The electric field of such plasma vortices originates within the fields of pressure gradients of a mosaic cell topology upon the ionization of particles. It is shown that waves in a neutral atmosphere, electric fields, and electromagnetic waves affect the stability of vortex structures. Wave signals from anthropogenic sources and smog may stimulate local precipitation upon the passage of a cloud front and weaken or strengthen vortex structures. The plasma vortex may capture charged particles of different masses. The charge separation in plasma vortex structures is driven by the polarization drift at the decay of electric fields. The self-focusing of plasma vortices upon the condensation of moisture in the atmospheric cloud cover leads to an increase in the energy of vortices.


Vortex Vortex Structure Smog Lightning Discharge Acoustic Gravity Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aburdzhania, G.D., Samoorganizatsiya nelineinykh vikhrevykh struktur i vikhrevoi turbulentnosti v dispergiruyushchikh sredakh (Self-organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media), Lominadze, G.D., Ed., Moscow: KomKniga, 2006.Google Scholar
  2. Bondur, V.G., Pulinets, S.A., and Kim, G.A., Role of variations in galactic cosmic rays in tropical cyclogenesis: evidence of Hurricane Katrina, Dokl. Earth Sci., 2008, vol. 422, no. 1, pp. 1124–1128.CrossRefGoogle Scholar
  3. Deirmendjian, D., Electromagnetic Scattering on Spherical Polydispersions, New York: American Elsevier Pub. Co., 1969.Google Scholar
  4. Erokhin, N.S., Zol’nikova, N.N., and Mikhailovskaya, L.A., Structural specifics of the atmospheric electric turbulence in the presence of coherent structures, Sbornik trudov mezhdunarodnoi konferentsii MSS-09 “Transformatsiya voln, kogerentnye struktury i turbulentnost’” (Proc. Int. Conf. MSS-09, Moscow, 2009), Erokhin, N.S., Kogan, E.Ya., Balebanov, V.M., Artekha, S.N., Zol’nikova, N.N., and Mikhailovskaya, L.A., Eds., Moscow: Lenand, 2009, pp. 424–479.Google Scholar
  5. Erokhin, N.S., Mikhailovskaya, L.A., and Shalimov, S.L., Conditions of the propagation of internal gravity waves through wind structures from the troposphere to the ionosphere, Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 7, pp. 732–744.CrossRefGoogle Scholar
  6. Gdalevich, G.L., Gubsky, V.F., Izhovkina, N.I., and Ozerov, V.D., Observation and theory of topside ionospheric plasma inhomogeneities, J. Atmos. Sol.-Terr. Phys., 1998, vol. 60, no. 2, pp. 247–252.CrossRefGoogle Scholar
  7. Gdalevich, G.L., Izhovkina, N.I., and Ozerov, V.D., Plasma cavern structure in the ionosphere F layer at the geomagnetic equator according to the Kosmos 900 satellite data, Cosmic Res., 2003, vol. 41, no. 6, pp. 561–566.CrossRefGoogle Scholar
  8. Gdalevich, G.L., Izhovkina, N.I., Ozerov, V.D., Bankov, N., Chapkanov, S., and Todorieva, L., Plasma irregularities in unstable outer ionosphere according to the Intercosmos-Bulgaria-1300 satellite data, Cosmic Res., 2006, vol. 44, no. 5, pp. 419–424.CrossRefGoogle Scholar
  9. Haerendel, G., Results from barium cloud releases in the ionosphere and magnetosphere, Space Res., 1973, vol. 13, pp. 601–617.Google Scholar
  10. Haerendel, G., Bauer, O.H., Cakir, S., Foepple, H., Rieger, E., and Valenzuela, A., Colored bubbles: an experiment for triggering equatorial spread-F, in Proc. Int. Symp. on Active Experiments in Space, Alpbach, 1983, pp. 295–298.Google Scholar
  11. Hines, C.O. and Reddy, C.A., On the propagation of atmospheric gravity waves through regions of wind shear, J. Geophys. Res., 1967, vol. 72, no. 3, pp. 1015–1034.CrossRefGoogle Scholar
  12. Islamov, S., The butterfly effect: how floods are initiated, Nauka Zhizn’, 2013, no. 10, pp. 122–123.Google Scholar
  13. Ivanov, K.G. and Kharshiladze, A.F., Dynamics of solar activity and anomalous weather in summer 2010: 1. Sector boundaries: anticyclone formation and destruction, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 444–449.CrossRefGoogle Scholar
  14. Izhovkina, N.I., Prutensky, I.S., Pulinets, S.A., Shutte, N.M., Plokhova, O.A., Klos, Z., and Rotkel, H., Chargedparticle fluxes and electromagnetic radiation in the topside auroral ionosphere inferred from the APEX experimental data, Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, no. 4, pp. 456–462.Google Scholar
  15. Izhovkina, N.I., Interaction between plasma structures in an unstable ionospheric plasma, Geomagn. Aeron. (Engl. Transl.), 2013, vol. 53, no. 3, pp. 329–336.CrossRefGoogle Scholar
  16. Kelley, M.C. and Livingston, R., Barium cloud striations revisited, J. Geophys. Res.: Space Phys., 2003, vol. 108, no. A1, p. 1044. doi 10.1029/2002JA009412CrossRefGoogle Scholar
  17. Kuznetsov, G.I. and Izhovkina, N.I., Two models of atmospheric aerosol, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1973, vol. 9, pp. 537–540.Google Scholar
  18. Mikhailovskaya, L.A., Erokhin, N.S., Zol’nikova, N.N., and Shkevov, R., Analytical model of regional largescale cyclogenesis with a variable number of crisis events, Sbornik trudov mezhdunarodnoi konferentsii MSS-09 “Transformatsiya voln, kogerentnye struktury i turbulentnost’” (Proc. Int. Conf. MSS-09, Moscow, 2009), Erokhin, N.S., Kogan, E.Ya., Balebanov, V.M., Artekha, S.N., Zol’nikova, N.N., and Mikhailovskaya, L.A., Eds., Moscow: Lenand, 2009, pp. 329–334.Google Scholar
  19. Mikhailovskii, A.V., Teoriya plazmennykh neustoichivostei. T. 2. Neustoichivosti neodnorodnoi plazmy (Theory of Plasma Instabilities, vol. 2: Instabilities of Inhomogeneous Plasma), Moscow: Atomizdat, 1977.Google Scholar
  20. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., and Yanovskii, V.V., On the freezing-in integrals and Lagrange invariants in hydrodynamic models, Sov. Phys.-JETP., 1982, vol. 56, no. 1, pp. 117–123.Google Scholar
  21. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Khomenko, G.A., and Yanovskii, V.V., Theory of the origin of large-scale structures in hydrodynamic turbulence, Sov. Phys.-JETP., 1983, vol. 58, no. 6, pp. 1149–1153.Google Scholar
  22. Narcisi, R.S. and Szuszczewicz, E.P., Direct measurements of electron density, temperature and ion composition in an equatorial spread-F ionosphere, J. Atmos. Terr. Phys., 1981, vol. 43, nos. 5–6, pp. 463–471.CrossRefGoogle Scholar
  23. Nezlin, M.V. and Chernikov, G.P., Analogy between drift vortices in plasma and geophysical hydrodynamics, Plasma Phys. Rep., 1995, vol. 21, pp. 922–944.Google Scholar
  24. Roederer, J.G., Dynamics of Geomagnetically Trapped Radiation, New York: Springer, 1970.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave PropagationRussian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations