Geomagnetism and Aeronomy

, Volume 54, Issue 6, pp 763–772 | Cite as

The anomaly of plasmapause and ionospheric trough positions from DEMETER data

  • Yu. Ya. RuzhinEmail author
  • M. Parrot
  • V. M. Smirnov
  • V. Kh. Depuev


The paper addresses the study of the specific pattern of the subauroral ionosphere marked with the anomalous positions of the plasmapause, the equatorial boundary of the mid-latitude (main) ionospheric trough, and the light-ion trough under quiet solar and geophysical conditions near the magnetospheric shell with the McIlwain parameter L = 3. The anomaly was identified on the base of data of active experiments with the SURA heating facility on October 2, 2007, which were conducted as part of the SURA-International Space Station (SURA-ISS) program in the framework of the DEMETER satellite mission. Joint analysis of the orbital data from DEMETER and ISS, together with the results of the complex ground-based measurements, shows that the revealed effect, which is characteristic of the premidnight sector north of the Moscow-SURA satellite path, is not local. It is observed in a vast territory, extending from the west to the east along the same L-shell, from at least Sweden to Kamchatka. The conclusions suggested by the DEMETER data are supported by analysis of the meridional distributions of the F2-peak plasma frequencies provided by GPS radio probing of the ionosphere. Comparison of these results with the model latitudinal-longitudinal and meridional distributions of the F2-peak plasma density provided by the IRI 2007 and SMI (Russian standard model of the ionosphere) models shows that the model predictions are at odds with the empirical data.


Total Electron Content Ionospheric Plasma Geomagnetic Latitude International Reference Ionosphere International Reference Ionosphere Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben’kova, N.P., Kozlov, E.F., Kochenova, N.A., Samorokin, N.I., and Fligel’, M.D., Struktura i dinamika subavroral’noi ionosfery (Structure and Dynamics of Subauroral Ionosphere), Moscow: Nauka, 1993.Google Scholar
  2. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1988.Google Scholar
  3. Carpenter, D.L. and Anderson, R.R., An ISEE/whistler model of electron density in the magnetosphere, J. Geophys. Res., 1992, vol. 97, no. A2, pp. 1097–1108.CrossRefGoogle Scholar
  4. Carpenter, D.L., Whistler evidence of a “knee” in the magnetospheric ionization density profile, J. Geophys. Res., 1963, vol. 68, no. 6, pp. 1675–1682.CrossRefGoogle Scholar
  5. Chappell, C.R., The terrestrial plasma source: a new perspective in solar-terrestrial processes from Dynamics Explorer, Rev. Geophys., 1988, vol. 26, no. 6, pp. 229–248.CrossRefGoogle Scholar
  6. Chasovitin, Yu.K., Gulyaeva, T.L., Deminov, M.G., and Ivanova, S.E., Russian Standard Model of Ionosphere (SMI), COST251TD(98)005.RAL, UK, 1998, pp. 161–172.Google Scholar
  7. Entsiklopediya nizkotemperaturnoi plazmy, T. 1-3: Ionosfernaya plazma, Ch. 1 (Encyclopedia of Low-Temperature Plasma, vols. 1–3: Ionospheric plasma, part 1), Kuznetsov, V.D. and Ruzhin, Yu.Ya, Eds., Moscow: Yanus-K, 2008.Google Scholar
  8. Deminov, M.G. and Shubin, V.N., Dynamics of subauroral ionosphere in the disturbed conditions, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 398–403.Google Scholar
  9. Deminov, M.G., Karpachev, A.T., Afonin, V.V., and Shmilauer, Ya., The changes in the position of the midlatitude ionospheric trough as a function of longitude and geomagnetic activity, Geomagn. Aeron., 1992, vol. 32, no. 5, pp. 185–188.Google Scholar
  10. Feldshtein, Ya.I. and Galperin, Yu.I., Structure of the auroral precipitations in the nightside sector of the magnetosphere, Cosmic Res., 1996, vol. 34, no. 3, pp. 209–227.Google Scholar
  11. Fifty Years of the Ionosphere, Ratcliffe, J.A., Ed., J. Atmos. Terr. Phys. (Special issue), 1974, vol. 36, no. 12, pp. 2069–2319.Google Scholar
  12. First Results of the DEMETER satellite, Parrot, M., Ed., Planet Space Sci. (Special issue), 2006, vol. 54, no. 5, pp. 411–558.Google Scholar
  13. Galperin, Yu.I., Sivtseva, L.D., Filippov, V.M., and Khalipov, V.L., Subavroral’naya verkhnyaya ionosfera (Subauroral Upper Ionosphere), Novosibirsk: Nauka, 1990.Google Scholar
  14. Gallagher, D.L., Craven, P.D., and Comfort, R.H., Global core plasma model, J. Geophys. Res., 2000, vol. 105, no. A8, pp. 18819–18833.CrossRefGoogle Scholar
  15. Gringauz, K.I., Kurt, V.G., Moroz, V.I., and Shklovskii, I.S., Ionized gas and fast electrons in the near-Earth interplanetary space, Dokl. Akad. Nauk SSSR, 1960, vol. 132, pp. 1062–1065.Google Scholar
  16. Gringauz, K.I., The structure of the ionized gas envelope of Earth from direct measurements in the USSR of local charged particle concentration, Planet. Space Sci., 1963, vol. 11, no. 3, pp. 281–296.CrossRefGoogle Scholar
  17. Ionosferno-magnitnye vozmushcheniya v vysokikh shirotakh (Ionospheric-Magnetic Disturbances at High Latitudes), Troshichev, O.A., Ed., Leningrad: Gidrometeoizdat, 1986.Google Scholar
  18. Jakowski, N. and Sardón, E., Comparison of GPS/IGS-derived TEC data with parameters measured by independent ionospheric probing techniques, Proc. IGS Analysis-Center Workshop, Neilan, R.E., Van Scoy, P.A., and Zumberge, J.F., Eds., Pasadena: Int. GPS Serv. for Geodyn. Centr. Bur., 1996, pp. 221–230.Google Scholar
  19. Karabadzhak, G.F., Komrakov, G.P., Kuznetsov, V.D., Plastinin, Yu.A., Ruzhin, Yu.Ya., Frolov, V.L., and Khmelinin, B.A., Studying the global spatial and time characteristics of the luminosity of the upper atmosphere and ionosphere of the Earth in response to the impact of radio wave radiation observed from ISS, Kosmonavtika Raketostroenie, 2009, vol. 51, no. 4, pp. 132–157, TsNIImash.Google Scholar
  20. Karpachev, A.T. and Sidorova, L.N., Detection of the trough and subtrough in the light-ion density from ISS-b satellite data at altitudes of ∼1100 km, Geomagn. Aeron., 1999, vol. 39, no. 3, pp. 318–325.Google Scholar
  21. Karpachev, A.T., The dependence of the main ionospheric trough shape on longitude, altitude, season, local time, and solar and magnetic activity, Geomagn. Aeron., 2003, vol. 43, no. 2, pp. 239–251.Google Scholar
  22. Karpachev, A.T., Large scale structure of the upper ionosphere plasma according to satellite observation data, in Entsiklopediya nizkotemperaturnoi plazmy, T. 1–3: Ionosfernaya plazma, Ch. 1 (Encyclopedia of Low-Temperature Plasma, vols. 1–3: onospheric plasma, part 1), Kuznetsov, V.D. and Ruzhin, Yu.Ya., Eds., Moscow: Yanus-K, 2008, pp. 418–446.Google Scholar
  23. Klimenko, V.V. and Namgaladze, A.A., The effects of nonsteady convection on the distribution of cold plasma in the ionosphere and protonosphere of the Earth, Geomagn. Aeron., 1981, vol. 21, no. 6, pp. 994–998.Google Scholar
  24. Kohnlein, W. and Raitt, W.J., Position of the mid-latitude trough in the topside ionosphere as deduced from ESRO-4 observations, Planet. Space Sci., 1977, vol. 25, no. 6, pp. 600–602.CrossRefGoogle Scholar
  25. Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (Ionosphere and Plasmasphere), Moscow: Nauka, 1984.Google Scholar
  26. Moffett, R. and Hanson, W., Calculated distributions of hydrogen and helium ions in the low-latitude ionosphere, J. Atmos. Terr. Phys., 1973, vol. 35, no. 2, pp. 207–222.CrossRefGoogle Scholar
  27. Moffett, R.J. and Quegan, S., The mid-latitude trough in the electron concentration of the ionospheric F-layer: a review of observations and modelling, J. Atmos. Terr. Phys., 1983, vol. 45, no. 5, pp. 315–343.CrossRefGoogle Scholar
  28. Ossakov, S.L. and Chaturvedi, P.K., Current convective instability in diffuse aurora, Geophys. Rev. Lett., 1979, vol. 6, no. 4, pp. 332–335.CrossRefGoogle Scholar
  29. Ruzhin, Yu., Kuznetsov, V.D., Karabadzhak, G.F., Plastinin, Ya.A., Khmelinin, B.A., Frolov, V.L., and Komrakov, G.P., Preliminary results of ionospheric plasma modification by high-power radio emission from the Sura facility as observed on board of the ISS, Abstr. 37 th COSPAR Scientific Assembly, July 13–20, 2008, Montreal, Canada, C52-0036-08, 2008, p. 1662.Google Scholar
  30. Ruzhin, Yu.Ya., Ivanov, K.G., Kuznetsov, V.D., and Petrov, V.G., Controlled injection of high-power radio pulses into the ionosphere—magnetosphere system and appearance of microsubstorms on October 2, 2007, Geomagn. Aeron., 2009, vol. 49, no. 3, pp. 324–334.CrossRefGoogle Scholar
  31. Ruzhin, Yu.Ya., Kuznetsov, V.D., Kovalev, V.I., Bershadskaya, I.N., Karabadzhak, G.F., Plastinin, Yu.A., Frolov, V.L., Komrakov, G.P., and Parrot, M., On the possibility of localization of a substorm by using the “SURA” heating facility, Radiophys. Quantum Electron., 2012, vol. 55, no. 1–2, pp. 85–94.CrossRefGoogle Scholar
  32. Ruzhin, Yu.Ya, Kuznetsov, V.D., Plastinin, Yu.A., Karabadzhak, G.F., Frolov, V.L., and Parrot, M., Auroral activity caused by high-power radioemission from the SURA facility, Geomagn. Aeron., 2013, vol. 53, no. 1, pp. 43–48.CrossRefGoogle Scholar
  33. Ruzhin, Yu.Ya., Smirnov, V.M., and Depuev, V.H., Ionosphere anomalies during the SURA-ISS experiments program, International Reference Ionosphere (IRI) Workshop 2013: IRI and GNSS, June 24–28, 2013, Olsztyn, Poland, Session 2, 2013, p. 56.Google Scholar
  34. Sivtseva, L.D., Filippov V.M., Khalipov, V., et al., Studying the midlatitude ionospheric trough by the groundbased geophysical methods and synchronous measurements onboard the satellites, Kosmich. Issled., 1983, vol. 21, no. 4, pp. 584–608.Google Scholar
  35. Smirnov, V.M., Solution of the inverse problem of electromagnetic transmission probing of the Earth ionosphere by gradient methods, J. Commun. Technol. Electron., 2001, vol. 46, no. 1, pp. 41–45.Google Scholar
  36. Taylor, H.A., Jr., The light ion trough, Planet. Space Sci., 1972, vol. 20, no. 10, pp. 1593–1605.CrossRefGoogle Scholar
  37. Taylor, H.A. and Walsh, W.J., The light ion trough, the main trough and the plasmapause, J. Geophys. Res., 1972, vol. 77, no. 34, pp. 6716–6723.CrossRefGoogle Scholar
  38. Taylor, H.A., Jr. and Cordier, G.R., In situ observations of irregular ionospheric structure associated with the plasmapause, Planet. Space Sci., 1974, vol. 22, no. 9, pp. 1289–1296.CrossRefGoogle Scholar
  39. Volkov, M.A., Lyatskii, V.B., and Mal’tsev, Yu.P., On the structure of the fields and field-aligned currents in the Harang discontinuity, Geomagn. Aeron., 1985, vol. 25, no. 3, pp. 445–449.Google Scholar
  40. Wrenn, G.L. and Raitt, W.J., In situ observations of midlatitude ionospheric phenomena associated with the plasmapause. Part II, Ann. Geophys., 1975, vol. 31, no. 1, pp. 17–28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. Ya. Ruzhin
    • 1
    Email author
  • M. Parrot
    • 2
  • V. M. Smirnov
    • 3
  • V. Kh. Depuev
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave PropagationRussian Academy of SciencesMoscow, TroitskRussia
  2. 2.Laboratoire de Physique et Chimie de l’Environment et de l’EspaceLe Centre National de la Recherche Scientifique (LPCE/CNRS)Orléans cedex 2France
  3. 3.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazino, Moscow regionRussia

Personalised recommendations