Geomagnetism and Aeronomy

, Volume 53, Issue 8, pp 917–921 | Cite as

Deep solar activity minima, sharp climate changes, and their impact on ancient civilizations

  • O. M. RaspopovEmail author
  • V. A. Dergachev
  • G. I. Zaitseva
  • M. G. Ogurtsov


It is shown that, over the past ∼10000 years (the Holocene), deep Maunder type solar minima have been accompanied by sharp climate changes. These minima occurred every 2300–2400 years. It has been established experimentally that, at ca 4.0 ka BP, there occurred a global change in the structure of atmospheric circulation, which coincided in time with the discharge of glacial masses from Greenland to North Atlantic and a solar activity minimum. The climate changes that took place at ca 4.0 ka BP and the deep solar activity minimum that occurred at ca 2.5 ka BP affected the development of human society, leading to the degradation and destruction of a number of ancient civilizations.


Holocene Solar Minimum Solar System Research Ancient Civilization Solar Activity Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M., Showers, W., Hoffmann, Sh., Lotti-Bond, R., Hajdas, I., and Bonani, G., Persistent solar influence on North Atlantic climate during the Holocene, Science, 2001, vol. 294, pp. 2130–2136.CrossRefGoogle Scholar
  2. DeMenocal, P., Cultural responses to climate change during the Late Holocene, Science, 2001, vol. 292, pp. 667–673.CrossRefGoogle Scholar
  3. Denton, G.H. and Karlen W., Holocene climate variations: Their pattern and possible cause, Quat. Res., 1973, vol. 3, p. 155. doi10.1016/0033-5894(73)90040-9.CrossRefGoogle Scholar
  4. Dergachev, V.A. and Zaitseva, G.I., Natural climate changes in the Holocene and adaptation of cultures, in Sovremennye problemy arkheologii Rossii (Recent Problems of Russian Archeology), Novosibirsk: Inst. Arkheol. Etnogr. Sib. Otd. Ross. Akad. Nauk, 2006, vol. 1, pp. 195–197.Google Scholar
  5. Eronen, M., Zetterberg, P., Briffa, K.R., Lindholm, M., Meriläinen, J., and Timonen, M., The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1. Chronology construction and initial references, The Holocene, 2002, vol. 12, pp. 673–680.CrossRefGoogle Scholar
  6. Helama, S., Lindholm, M., Timonen, M., Merilainen, J., and Eronen, M., The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2. Interannual to centennial variability in summer temperatures for 7500 years, The Holocene, 2002, vol. 12, pp. 681–687.CrossRefGoogle Scholar
  7. Klimenko, V.V., Sharp cooling of the Northern Hemisphere in the Early Subatlantic Age (650–280 BC), Pages News, 2004, vol. 12, no. 1, pp. 13–15.Google Scholar
  8. Langway, C.C., Oeschger, H., and Dansgaard, W., Greenland Ice Core: Geophysics, Geochemistry, and the Environment, Am. Geophys. Union, 1985.CrossRefGoogle Scholar
  9. Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J., Holocene climate variability, Quat. Res., 2004, vol. 62, no. 3, pp. 243–255.CrossRefGoogle Scholar
  10. Peiser, B., Comparative analysis of Late Holocene environmental and social upheaval, Br. Arhaeol. Rep., Int. Ser., 1998, vol. 728, pp. 140–147.Google Scholar
  11. Raspopov, O.M., Dergachev, V.A., Kolström, T., Kuzmin, A.V., Lopatin, E.V., and Lisitsyna, O.V., Long-term solar activity variations as a stimulator of abrupt climate change, Russ. J. Earth Sci., 2007, vol. 9, p. ES3002. doi10.2205/2007ES000250Google Scholar
  12. Staubwasser, M., Sirocko, F., Grootes, P.M., and Segl, M., Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability, Geophys. Res. Lett., 2003, vol. 30, no. 8, p. 1425. doi10.1029/2002GL016822CrossRefGoogle Scholar
  13. Stuiver, M., Reimer, P., Bard, T., et al., INTCAL98 radiocarbon age calibration, 24 000–0 cal BP, Radiocarbon, 1998b, vol. 40, no. 3, pp. 1041–1083.Google Scholar
  14. Van Geel, B., Buurman, J., and Waterbolk, H.T., Archaeological and palaeoecological indicators for an abrupt climate change in the Netherlands and evidence for climatological teleconnections around 2650 BP, J. Quat. Sci., 1996, vol. 11, pp. 451–460.CrossRefGoogle Scholar
  15. Van Geel, B., Raspopov, O.M., van der Plicht, J., and Renssen, H.T., Solar forcing of abrupt climate change around 850 calendar years BC, Br. Archaeol. Rep., Int. Ser., 1998, vol. 728, pp. 169–171.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. M. Raspopov
    • 1
    Email author
  • V. A. Dergachev
    • 2
  • G. I. Zaitseva
    • 3
  • M. G. Ogurtsov
    • 2
  1. 1.St. Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave PropagationRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute for the History of Material CultureRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations