Advertisement

Geomagnetism and Aeronomy

, Volume 51, Issue 6, pp 741–752 | Cite as

Magnetic storms and their effects in the lower ionosphere: Differences in storms of various types

  • S. N. SokolovEmail author
Article

Abstract

During magnetic storms (MS’s) in the ionospheric D region, changes in the electron density and corresponding effects on radiowave propagation are observed. The differences in manifestations of MS’s in the lower ionosphere are mainly caused by the time and spatial differences in precipitations of energetic electrons. It is shown that the observed differences in the effects of storms in the D region are related to the differences in the corresponding types of MS’s determined by the observed fluxes of energetic electrons (E ∼ 0.1–2 MeV) at L ≈ 3–8. The storm types are identified by changes in the geomagnetic ap and AE indices and the ap/Dst and AE/Dst ratios during the recovery phase of a storm.

Keywords

Solar Wind Recovery Phase Magnetic Storm Geomagnetic Storm Relativistic Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azarnin, G.V., Orlov, A.B., Pronin, A.E, et al., Prediction of ULF Fields during Solar Proton Events, Sudden Ionospheric Disturbances, and Post-Storm Periods, in Problemy difraktsii i rasprostraneniya voln (Problems of Diffraction and Wave Propagation), St. Petersburg: St. Peterb. Univ., 1997, no. 27, p. 77.Google Scholar
  2. Baker, D.N., Effects of the Sun on the Earth’s Environment, J. Atmos. Sol.-Terr. Phys., 2000, vol. 62, no. 17–18, pp. 1669–1681.CrossRefGoogle Scholar
  3. Baker, D.N. and Kanekal, S.G., Solar Cycle Changes, Geomagnetic Variations, and Energetic Particle Properties in the Inner Magnetosphere, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, no. 2–4, pp. 195–206.CrossRefGoogle Scholar
  4. Baker, D.N., Goldberg, R.A., Herrero, F.A., Blake, J.B., and Callis, L.B., Satellite and Rocket Studies of Relativistic Electrons and Their Influence on the Middle Atmosphere, J. Atmos. Terr. Phys., 1993, vol. 55, no. 13, pp. 1619–1628.CrossRefGoogle Scholar
  5. Belikovich, V.V., Benediktov, E.A., Vyakhirev, V.D., and Grishkevich, L.V., Nighttime Ionization of the Midlatitude D Region during a Magnetic Storm, Geomagn. Aeron., 1980, vol. 20, no. 3, pp. 547–548.Google Scholar
  6. Beynon, W.J.G. and Williams, E.R., Rocket Measurements of D-Region Electron Density Profiles, J. Atmos. Terr. Phys., 1976, vol. 38, no. 12, pp. 1319–1325.CrossRefGoogle Scholar
  7. Callis, L.B., Baker, D.N., Blake, J.B., et al., Precipitating Relativistic Electrons: Their Long-Term Effect on Stratospheric Odd Nitrogen Levels, J. Geophys. Res., 1991, vol. 96, no. D2, pp. 2939–2976.CrossRefGoogle Scholar
  8. Cliverd, M.A., Seppala, A., Rodger, C.J., et al., Additional Stratospheric NOx Production by Relativistic Electron Precipitation during the 2004 Spring NOx Descent Event, J. Geophys. Res., 2009, vol. 114, p. A04305; doi:10.1029/2008JA013472.CrossRefGoogle Scholar
  9. Danilov, A.D., Rocket Research in the Middle Atmosphere, Proc. the 11th ESA Symp. on European Rocket and Balloon Programmes and Related Research, Montreux, 1993, Rolfe, E.J., Ed., pp. 321–325.Google Scholar
  10. Danilov, A.D. and Lastovicka, J., Effects of Geomagnetic Storms on the Ionosphere and Atmosphere, Int. J. Geomagn. Aeron., 2001, vol. 2, no. 3, pp. 209–224.Google Scholar
  11. Degtyarev, V.I. and Chudnenko, S.E., Indicators of an Increase in the Flux of Relativistic Electrons in Geostationary Orbit during Geomagnetic Storms, Geomagn. Aeron., 2007, vol. 47, no. 1, pp. 11–17 [Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, pp. 8–14].CrossRefGoogle Scholar
  12. Dickinson, P.H.G. and Bennett, F.D.G., Diurnal Variations in the D-Region during a Storm After-Effect, J. Atmos. Terr. Phys., 1978, vol. 40, no. 5, pp. 549–558.CrossRefGoogle Scholar
  13. Driatskii, V.M., Priroda anomal’nogo pogloshcheniya kosmicheskogo radioizlucheniya v nizhnei ionosfere vysokikh shirot (Nature of the Anomalous Absorption of Cosmic Radioemission in the High-Latitude Lower Ionosphere), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  14. Friedel, R.H.W., Reeves, G.D., and Obara, T., Relativistic Electron Dynamics in the Inner Magnetosphere: A Review, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, no. 2, pp. 265–282.CrossRefGoogle Scholar
  15. Gaines, E.E., Chenette, D.L., Imhof, W.L., Jackman, C.H., and Winningham, J., Relativistic Electron Fluxes in May 1992 and Their Effect on the Middle Atmosphere, J. Geophys. Res., 1995, vol. 100D, pp. 1027–1033.CrossRefGoogle Scholar
  16. Goldberg, R.A., Baker, D.N., Herrero, F.H., et al., Mesospheric Heating during Highly Relativistic Electron Precipitation Events, J. Geomagn. Geoelectr., 1995, vol. 47, no. 11, pp. 1237–1247.CrossRefGoogle Scholar
  17. Goldberg, R.A., Jackman, C.H., Barcus, J.R., and Soraas, F., Nighttime Auroral Energy Deposition in the Middle Atmosphere, J. Geophys. Res., 1984, vol. 89A, pp. 5581–5596.CrossRefGoogle Scholar
  18. Gonzalez, W.D., Gonzalez, A.L.C., and Tsurutani, B.T., On the Equivalence of the Solar Wind Coupling Parameter and the Magnetospheric Output Parameter UT during Intense Geomagnetic Storms, Planet. Space Sci., 1990, vol. 38, no. 3, pp. 341–342.CrossRefGoogle Scholar
  19. Hara, T. and Horiai, K., Geomagnetic Disturbances and Associated Phase Anomalies of VLF Radio Waves at Midlatitudes, J. Geomagn. Geoelecr., 1979, vol. 31, no. 2, pp. 75–85.CrossRefGoogle Scholar
  20. Hilmer, R.V., Ginet, G.P., and Cayton, T.E., Enhancement of Equatorial Energetic Electron Fluxes near L = 4, 2 as Result of High Speed Solar Wind Streams, J. Geophys. Res., 2000, vol. 105A, pp. 23311–23322.CrossRefGoogle Scholar
  21. Iles, R.H.A., Fazakerly, A.N., Johnstone, A.D., Meredith, N.P., and Buhler, P., The Relativistic Electron Response in the Outer Radiation Belt during Magnetic Storms, Ann. Geophys., 2002, vol. 20, no. 7, pp. 957–965.CrossRefGoogle Scholar
  22. Imhof, W.L., Reagan, J.B., Gaines, E.E., et al., Coordinated Measurements of ELF Transmission Anomalies and the Precipitation of Energetic Particles into the Ionosphere, Radio Sci., 1978, vol. 13, no. 4, pp. 717–727.CrossRefGoogle Scholar
  23. Ionospheric Absorption Data from Finland, The Finnish Academy of Science and Letters: 1995.Google Scholar
  24. Ionospheric Data in Japan, Tokyo: NIPR, 1995.Google Scholar
  25. Kamide, Y., Yokoyama, N., Gonzalez, W., et al., Two-Step Development of Geomagnetic Storms, J. Geophys. Res., 1998, vol. 103A, pp. 6917–6921.CrossRefGoogle Scholar
  26. Kanekal, S.G., Friedel, R.H.W., Reeves, G.D., et al., Relativistic Electron Events in 2002: Studies of Pitch Angle Isotropization, J. Geophys. Res., 2005, vol. 110, p. A12224; doi:10.1029/2004JA010974.CrossRefGoogle Scholar
  27. Kishchuk, V.P., Marchenko, S.G., and Sokolov, S.N., Effects of Large-Scale Precipitation of Relativistic Magnetospheric Electrons during and after the Geomagnetic Storm of November 27–28, 1990, according to the ULF Propagation Data, Geomagn. Aeron., 1993, vol. 33, no. 4, pp. 93–100.Google Scholar
  28. Kleimenova, N.G., Kozyreva, O.V., Rozhnoy, A.A., and Solov’eva, M.S., Variations in the VLF Signal Parameters on the Australia-Kamchatka Radio Path during Magnetic Storms, Geomagn. Aeron., 2004, vol. 44, no. 3, pp. 385–393 [Geomagn. Aeron. (Engl. Transl.), 2004, vol. 44, pp. 354–362].Google Scholar
  29. Kozyreva, O.V. and Kleimenova, N.G., Estimation of Storm-Time Level of Day-Side Wave Geomagnetic Activity Using a New ULF Index, Geomagn. Aeron., 2008, vol. 48, no. 4, pp. 511–519 [Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, pp. 491–498].CrossRefGoogle Scholar
  30. Kozyreva, O., Pilipenko, V., Engebretson, M.J., et al., In Search of a New ULF Wave Index: Comparison of Pc5 Power with Dynamics of Geostationary Relativistic Electrons, Planet. Space Sci., 2007, vol. 55, no. 6, pp. 755–769.CrossRefGoogle Scholar
  31. Larsen, T.R., Preliminary Discussion of ELF and VLF Propagation Data, in ELF-VLF Radio Wave Propagation, Holtet, J.A., Ed., Dordrecht: Reidel, 1974, pp. 285–289.Google Scholar
  32. Larsen, T.R., Reagan, J.B., Imhof, W.L., Montbriand, L.E., and Belrose, J.S., A Coordinated Study of Electron Precipitation and D-Region Electron Densities over Ottawa during Disturbed Conditions, J. Geophys. Res., 1976, vol. 81, no. 13, pp. 2200–2212.CrossRefGoogle Scholar
  33. Larsen, T.R., Potemra, T.A., Imhof, W.L., and Reagan, J.B., Energetic Electron Precipitation and VLF Phase Disturbances at Middle Latitudes Following the Magnetic Storm of December 16, 1971, J. Geophys. Res., 1977, vol. 82, no. 10, pp. 1519–1524.CrossRefGoogle Scholar
  34. Lastovicka, J., Effects of Geomagnetic Storms in the Lower Ionosphere, Middle Atmosphere and Troposphere, J. Atmos. Sol.-Terr. Phys., 1996, vol. 58, no. 7, pp. 831–843.CrossRefGoogle Scholar
  35. Lauter, E.A., A Cataloque of Particle Induced Ionospheric Absorption at Mid-Latitudes 1948–78, Meteorol., 1979, vol. 29, no. 5, pp. 279–292.Google Scholar
  36. Lauter, E.A., Bremer, J., Grafe, A., et al., The Post Storm Ionization Enhancements in the Mid-Latitude D Region and Related Electron Precipitation from the Magnetosphere, HHI-STP-Rep. no. 9, Berlin, 1977.Google Scholar
  37. Li, X., Baker, D.N., Temerin, M., et al., Are Energetic Electrons in the Solar Wind the Source of the Outer Radiation Belt?, Geophys. Res. Lett., 1997, vol. 24, no. 8, pp. 923–926.CrossRefGoogle Scholar
  38. Loewe, C.A. and Prolss, G.W., Classification and Mean Behavior of Magnetic Storms, J. Geophys. Res., 1997, vol. 102A, pp. 14 209–14 213.Google Scholar
  39. Longden, N., Honary, F., Kavanagh, A.J., and Manninen, J., The Driving Mechanisms of Particle Precipitation during the Moderate Geomagnetic Storm of 7 January 2005, Ann. Geophys., 2007, vol. 25, no. 9, pp. 2053–2068.CrossRefGoogle Scholar
  40. Longden, N., Denton, M.H., and Honary, F., Particle Precipitation during ICME-Driven and CIR-Driven Geomagnetic Storms, J. Geophys. Res., 2008, vol. 113, p. A06205; doi:10.1029/2007JA012752.CrossRefGoogle Scholar
  41. Lyons, L.R., Lee, D.-Y., Thorne, R.M., Horne, R.B., and Smith, A.J., Solar Wind-Magnetosphere Coupling Leading to Relativistic Electron Energetization during High-Speed Streams, J. Geophys. Res., 2005, vol. 110, p. A11202; doi:10.1029/2005JA011254.CrossRefGoogle Scholar
  42. Mathie, R.A. and Mann, I.R., A Correlation between Extended Intervals of ULF Wave Power and Storm Time Geosynchronous Relativistic Electron Flux Enhancements, Geophys. Res. Lett., 2000, vol. 27, no. 20, pp. 3261–3264.CrossRefGoogle Scholar
  43. Mendes da Costa, A. and Rizzo Piazza, L., Diurnal Lower Ionosphere Electron Density Variations Observed in the South Atlantic Geomagnetic Anomaly and SubAntarctic Region during the Occurrence of the Major PCA Event of August 4, 1972, J. Atmos. Terr. Phys., 1992, vol. 54, no. 7–8, pp. 903–913.CrossRefGoogle Scholar
  44. Meredith, N.P., Cain, M., Horne, R.B., et al., Evidence for Chorus-Driven Electron Acceleration to Relativistic Energies from a Survey of Geomagnetically Disturbed Periods, J. Geophys. Res., 2003, vol. 108, p. A61248; doi:10.1029/2002JA009764.Google Scholar
  45. Montbriand, L.E. and Belrose, J.S., Changes in Electron Precipitation Inferred from Spectra Deduced from D Region Electron Densities during a Post-Magnetic Storm Effect, J. Geophys. Res., 1976, vol. 82, no. 13, pp. 2213–2222.CrossRefGoogle Scholar
  46. Nagai, T., Yukimatu, A.S., Matsuoka, A., et al., Time-Scales of Relativistic Electron Enhancements in the Slot Region, J. Geophys. Res., 2006, vol. 111, p. A11205; doi:10.1029/2006JA011837.CrossRefGoogle Scholar
  47. O’Brien, T.P., McPherron, R.L., Sornette, D., et al., Which Magnetic Storms Produce Relativistic Electrons at Geosynchronous Orbit?, J. Geophys. Res., 2001, vol. 106A, pp. 15533–15544.CrossRefGoogle Scholar
  48. Pakhomov, S.V., Simultaneous Rocket Measurements of Electron Density in the Ionospheric D Region at Polar, Middle, and Equatorial Latitudes, Geomagn. Aeron., 1981, vol. 21, no. 5, pp. 934–936.Google Scholar
  49. Panasenko, S.V. and Chernogor, L.F., Event of the November 7–10, 2004, Magnetic Storm in the Lower Ionosphere, Geomagn. Aeron., 2007, vol. 47, no. 5, pp. 646–658 [Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, pp. 608–620].CrossRefGoogle Scholar
  50. Peter, W.B., Chevalier, M.W., and Inan, U.S., Perturbations of Midlatitude Subionospheric VLF Signals Associated with Lower Ionospheric Disturbances during Major Geomagnetic Storms, J. Geophys. Res., 2006, vol. 111, p. A03301; doi:10.1029/2005JA011346.CrossRefGoogle Scholar
  51. Reagan, J.B., Ionization Processes, in Dynamical and Chemical Coupling between the Neutral and Ionized Atmospheres, Grandal, B. and Holtet, J.A., Eds., Dordrecht, 1977, pp. 145–160.Google Scholar
  52. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Acceleration and Loss of Relativistic Electrons during Geomagnetic Storms, Geophys. Res. Lett., 2003, vol. 30, p. 1529; doi:10.1029/2002GL016513.CrossRefGoogle Scholar
  53. Sato, T., Morphological Features of the Winter Anomaly in Ionospheric Absorption of Radio Waves at Middle Latitude, J. Geophys. Res., 1980, vol. 85, no. 1, pp. 197–206.CrossRefGoogle Scholar
  54. Sato, T., Geomagnetic Control of the Winter Anomaly in Absorption of Radio Waves at Mid-Latitudes, J. Geophys. Res., 1981, vol. 86A, pp. 9137–9151.CrossRefGoogle Scholar
  55. Schwentek, H., Some Results Obtained from the European Cooperation Concerning Studies of the Winter Anomaly in Ionospheric Absorption, in Methods of Measurements and Results of Lower Ionosphere Structure, Rawer, K., Ed., Berlin, 1974, pp. 293–303.Google Scholar
  56. Sharber, J.R., Frahm, R.A., Link, R., et al., UARS Particle Environment Monitor Observations during the November 1993 Storm: Auroral Morphology, Spectral Characterization, and Energy Deposition, J. Geophys. Res., 1998, vol. 103A, pp. 26307–26322.CrossRefGoogle Scholar
  57. Smith, A.J., Meredith, N.P., and O’Brien, T.P., Differences in Ground-Observed Chorus in Geomagnetic Storms with and Without Enhanced Relativistic Electron Fluxes, J. Geophys. Res., 2004, vol. 109A; doi:10.1029/2004JA01049.Google Scholar
  58. Sokolov, S.N., Effects of Magnetospheric Storms in the Midlatitude Lower Ionosphere, Magnitos. Issled., 1982, no. 1, pp. 91–109.Google Scholar
  59. Sokolov, S.N., Position of the Ring Current and Variations in Precipitating Electron Fluxes at Midlatitudes, Magnitos. Issled., 1983, no. 2, pp.103–108.Google Scholar
  60. Sokolov, S.N., On the Relation between ULF Signal Anomalies on Extensive Paths and the Magnetospheric Storm Ring Current, Geomagn. Aeron., 1986, vol. 26, no. 6, pp. 923–927.Google Scholar
  61. Sokolov, S.N., On the Relation between Electron Density Variations in the Midlatitude Lower Ionosphere and the Ring Current Intensity, Geomagn. Aeron., 1987, vol. 27, no. 3, pp. 388–392.Google Scholar
  62. Sokolov, S.N., Effects of Magnetospheric Storms in the Lower Ionosphere, Cand. Sci. (Phys.-Math.) Dissertation, Leningrad: Leningr. State Univ., 1990, p. 15.Google Scholar
  63. Sokolov, S.N., Sporadic Winter Anomaly in the D Region and Geomagnetic Activity. 1. Databank: Analysis of Observations in Ottawa and Pennsylvania, on Sardinia and Wallops Islands, and in Keweenaw, Geomagn. Aeron., 1999, vol. 39, no. 3, pp. 88–100 [Geomagn. Aeron. (Engl. Transl.), 1999, vol. 39, pp. 351–362].Google Scholar
  64. Sokolov, S.N., Sporadic Winter Anomaly in the D Region and Geomagnetic Activity. 2: The Analysis of South Uist and White Sands Observations, Geomagn. Aeron., 2000, vol. 40, no. 1, pp. 63–67 [Geomagn. Aeron. (Engl. Transl.), 2000, vol. 40, pp. 56–60].Google Scholar
  65. Sokolov, S.N., Shtennikov, Yu.V., Orlov, A.B., and Pronin, A.E., Post-Storm Effects Caused by Fluxes of Precipitating Magnetospheric Electrons during the Propagation of ULF Signals on Midlatitude Paths, Geomagn. Aeron., 1994, vol. 34, no. 2, pp. 107–113.Google Scholar
  66. Tadokoro, H., Tsuchiya, F., Miyoshi, Y., et al., Electron Flux Enhancement in the Inner Radiation Belt during Moderate Magnetic Storms, Ann. Geophys., 2007, vol. 25, no. 6, pp. 1359–1364.CrossRefGoogle Scholar
  67. Torkar, K.M. and Friedrich, M., Empirical Electron Recombination Coefficients in the D- and E-Region, J. Atmos. Terr. Phys., 1988, vol. 50, no. 8, pp. 749–761.CrossRefGoogle Scholar
  68. Vampola, A.L. and Gorney, D.J., Electron Energy Depositions in the Middle Atmosphere, J. Geophys. Res., 1983, vol. 88A, pp. 6267–6274.CrossRefGoogle Scholar
  69. Wakai, N., Ouchi, C., and Nemoto, C., Spatial Extent of the Winter Anomaly in Absorption, in Methods of Measurements and Results of Lower Ionosphere Structure, Rawer, K., Ed., Berlin, 1974, pp. 307–311.Google Scholar
  70. Wratt, D.S., Ionization Enhancement in the Middle Latitude D-Region Due to Precipitating High Energy Electrons, J. Atmos. Terr. Phys., 1976, vol. 38, no. 5, pp. 511–516.CrossRefGoogle Scholar
  71. Zheng, Y., Lui, A.T.Y., Li, X., and Fok, M.-C., Characteristics of 2–6 MeV Electrons in the Slot Region and Inner Radiation Belt, J. Geophys. Res., 2006, vol. 111, p. A10204; doi:10.1029/2006JA011748.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations