Geomagnetism and Aeronomy

, Volume 51, Issue 2, pp 275–283 | Cite as

Possible impact of interplanetary and interstellar dust fluxes on the Earth’s climate

  • M. G. OgurtsovEmail author
  • O. M. Raspopov


This article considers the process of entry of cosmic substance into the Earth’s atmosphere and the further evolution of the formed extraterrestrial aerosol. It is shown that meteorite-derived aerosol generated in the atmosphere may affect the Earth’s climate in two ways: (a) particles of meteoric haze may serve as condensation nuclei in the troposphere and stratosphere; (b) charged meteor particles residing in the mesosphere may markedly change (by a few percent) the total atmospheric resistance and, thereby, affect the global current circuit. Changes in the global electric circuit, in turn, may influence cloud formation processes. The obtained results argue for the fact that the meteoric dust in the Earth’s atmosphere is potentially one of the important climate-forming agents. It is shown that the amount of interstellar dust in the Earth’s atmosphere is too small to have a considerable affect on atmospheric processes.


Dust Olivine Dust Particle Interstellar Dust Cosmic Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balsley, B.B. and Riddle, A.C., Monthly Mean Values of the Mesospheric Wind Field over Poker Flat, Alaska, J. Atmos. Sci., 1984, vol. 41, pp. 2368–2375.CrossRefGoogle Scholar
  2. Bigg, E.K., The Detection of Atmospheric Dust and Temperature Inversions by Twilight Scattering, J. Meteorol., 1956, vol. 13, pp. 262–268.CrossRefGoogle Scholar
  3. Ceplecha, Z., Luminous Efficiency Based on Photographic Observations of the Lost-City Fireball and Implications for the Influx of Interplanetary Bodies onto Earth, Astron. Astrophys., 1996, vol. 311, no. 1, pp. 329–332.Google Scholar
  4. Chiar, J.E. and Tielens, A.G., Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium, Astrophys. J., 2006, vol. 637, pp. 774–785.CrossRefGoogle Scholar
  5. Day, K.L., Steyer, T.R., and Huffman, D.R., A Quantitative Study of Silicate Extinction, Astrophys. J., 1974, vol. 191, pp. 415–418.CrossRefGoogle Scholar
  6. Dohnanyi, J.S., Interplanetary Objects in Review: Statistics of Their Masses and Dynamics, Icarus, 1972, vol. 17, pp. 1–48.CrossRefGoogle Scholar
  7. Ermakov, V.I., Okhlopkov, V.P., and Stozhkov, Yu.I., Effect of Cosmic Dust on Terrestrial Climate, Kratk. Soobshch. Fiz. FIAN, 2006, no. 3, pp. 41–51.Google Scholar
  8. Ermakov, V.I., Okhlopkov, V.P., and Stozhkov, Yu.I., Effect of Cosmic Dust on Cloudiness, Albedo, and Terrestrial Climate, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., 2007, no. 5, pp. 41–45.Google Scholar
  9. Ermakov, V.I., Okhlopkov, V.P., and Stozhkov, Yu.I., Cosmic Rays and Dust in the Earth’s Atmosphere, Izv. Ross. Akad. Nauk, Ser. Fiz., 2009, vol. 73, no. 3, pp. 434–436.Google Scholar
  10. Forkman, P., Eriksson, P., Murtagh, D., and Espy, P., Observing the Vertical Branch of the Mesospheric Circulation at Latitude 60° N Using Ground-Based Measurements of CO and H2O, J. Geophys. Res., vol. 110D, p. 05107; doi:10.1029/2004JD004916.Google Scholar
  11. Granitsky, L.V. and Borisevich, A.N., Research of Influence of the Meteoric Stream on the Weather Condition: Preliminary Consideration, Proc. SPIE Int. Soc. Opt. Eng., 2000, vol. 4341, pp. 563–570.Google Scholar
  12. Hunten, D.M., Turco, R.P., and Toon, O.B., Smoke and Dust Particles of Meteoric Origin in the Mesosphere and Stratosphere, J. Atmos. Sci., 1980, vol. 37, pp. 1342–1357.CrossRefGoogle Scholar
  13. Ivlev, L.S., Aerosol Model of the Atmosphere, in Problemy atmosfernoi fiziki (Problems of Atmospheric Physics), Leningrad: Leningr. Gos. Univ., 1969, pp. 125–160.Google Scholar
  14. Kalitin, N.N., Cosmic Dust according to Actinometric Measurements, Dokl. Akad. Nauk SSSR, 1944, vol. 45, p. 375.Google Scholar
  15. Kane, T.J. and Gardner, C.S., Lidar Observations of the Meteoric Deposition of Mesospheric Metals, Science, 1993, vol. 259, pp. 1297–1300.CrossRefGoogle Scholar
  16. Kasatkina, E.A., Shumilov, O.I., and Krapiec, M., On Periodicities in Long Term Climatic Variations near 68° N, 30° E, Adv. Geosci., 2007a, vol. 13, pp. 25–29.CrossRefGoogle Scholar
  17. Kasatkina, E.A., Shumilov, O.I., Lukina, N.V., Krapiec, M., and Jacoby, G., Stardust Component in Tree Rings, Dendrochronologia, 2007b, vol. 24, pp. 131–135.CrossRefGoogle Scholar
  18. Khrgian, A.Kh., Fizika atmosfery (Physics of the Atmosphere), Leningrad: Gidrometizdat, 1969.Google Scholar
  19. Krüger, H., Landgraf, M., Altobelli, M., and Grun, E., Interstellar Dust in the Solar System, Space Sci. Rev., 2007, vol. 130, pp. 401–408.CrossRefGoogle Scholar
  20. Kyte, F.T. and Wasson, J.T., Accretion Rate of Extraterrestrial Matter: Iridium Deposited 33 to 67 Million Years Ago, Science, 1986, vol. 232, pp. 1225–1229.CrossRefGoogle Scholar
  21. Lal, D. and Jull, A.J.T., Atmospheric Cosmic Dust Fluxes in the Size Range 10−4 to 10 Centimeters, Astrophys. J., 2002, vol. 576, pp. 1090–1097.CrossRefGoogle Scholar
  22. Landgraf, M., Kruger, H., Altobelli, N., and Grun, E., Penetration of the Heliosphere by the Interstellar Dust Stream during Solar Maximum, J. Geophys. Res., 2003 vol. 108A, p. 8030; doi:10.1029/2003JA009872.CrossRefGoogle Scholar
  23. Laor, A. and Draine, T., Spectroscopic Constraints on the Properties of Dust in Active Galactic Nuclei, Astrophys. J., 1993, vol. 402, pp. 441–468.CrossRefGoogle Scholar
  24. Love, S.G. and Brownlee, D.E., A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust, Science, 1993, vol. 262, pp. 550–553.CrossRefGoogle Scholar
  25. Matveev, L.T., Kurs obshchei meteorologii. Fizika atmosfery (A Course of Meteorology. The Physics of the Atmosphere), Leningrad: Gidrometeoizdat, 1976.Google Scholar
  26. Maurette, M., Jehanno, C., Robin, E., and Hammer, C.U., Characteristics and Mass Distribution of Extraterrestrial Dust from the Greenland Ice Cap, Nature, 1987, vol. 328, pp. 699–702.CrossRefGoogle Scholar
  27. Megner, L., Funneling of Meteoric Material into the Polar Winter Vortex, Proc. 17th Int. Conf. on Nucleation and Atmospheric Aerosols, Galway, 2007, O’Dowd, G.D. and Wagner, P.E., Eds., pp. 860–864.Google Scholar
  28. Myhre, G., Highwood, E.J., Shine, K.P., and Stordal, F., New Estimates of Radiative Forcing Due to Well Mixed Greenhouse Gases, Geophys. Res. Lett., 1998, vol. 25, pp. 2715–2718.CrossRefGoogle Scholar
  29. Newkirk, G.A., Meteoric Dust in the Stratosphere Determined by Optical Scattering Technique, Smithsonian Contrib. Astrophys., 1967, vol. 11, pp. 349–358.Google Scholar
  30. Pavlov, A.A., Toon, O.B., Pavlov, A.K., Bally, J., and Pollard, D., Passing through a Giant Molecular Cloud: “Snowball” Glaciations Produced by Interstellar Dust, Geophys. Res. Lett., 2005, vol. 32, p. L03705; doi:10.1029/2004GL021890.CrossRefGoogle Scholar
  31. Rapp, M., Strelnikova, I., and Gumbel, J., Meteoric Smoke Particles: Evidence from Rocket and Radar Techniques, Adv. Space Res., 2007, vol. 40, pp. 809–817.CrossRefGoogle Scholar
  32. Rasmussen, K.L., Clausen, H.B., and Kallemeyn, G.W., No Iridium Anomaly after the 1908 Tunguska Impact: Evidence from a Greenland Ice Core, Meteoritics, 1995, vol. 30, pp. 634–638.Google Scholar
  33. Reid. G.C., Electrical Structure of the Middle Atmosphere, in The Earth’s Electrical Environment, Washington D.C.: Nat. Acad. Press, 1986, p. 263.Google Scholar
  34. Rosinski, J. and Snow, R.H., Secondary Particulate Matter from Meteor Vapors, J. Meteorol., 1961, vol. 18, pp. 736–745.CrossRefGoogle Scholar
  35. Selezneva, E.S., Specific Vertical Distribution of Condensation Nuclei at Different Stratification of the Atmosphere, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1962, no. 134.Google Scholar
  36. Taylor, S., Lever, J.H., and Harvey, R., Accretion Rate of Cosmic Spherules Measured at the South Pole, Nature, 1998, vol. 392, pp. 899–903.CrossRefGoogle Scholar
  37. Tinsley, B.A., Burn, G.B., and Zhou, L., The Role of the Global Electric Circuit in Solar and Internal Forcing of Clouds and Climate, Adv. Space Res., 2007, vol. 40, pp. 1126–1139.CrossRefGoogle Scholar
  38. Tirskii, G.A., Interaction between Cosmic Bodies and the Earth’s and Planet’s Atmospheres, Soros. Obraz. Zh., 2000, vol. 6, no. 5, pp. 76–82.Google Scholar
  39. Voigt, C., Schlager, H., Luo, B.P., et al., Nitric Acid Trihidrate (NAT) Formation at Low NAT Supersaturation in Polar Stratospheric Clouds (PSCs), Atmos. Chem. Phys., 2004, vol. 5, pp. 1371–1380.CrossRefGoogle Scholar
  40. Voltz, F.E. and Goody, R.M., Intensity of the Twilight and Upper Atmospheric Dust, J. Atmos. Sci., 1962, vol. 19, pp. 385–406.CrossRefGoogle Scholar
  41. Yiou, F., Raisbeck, G.M., and Jehanno, C., The Micrometeorite Flux to the Earth during the Last 200 000 Years as Deduced from Cosmic Spherule Concentration in Antarctic Ice Cores, Meteoritics, 1991, vol. 24, no. 4, p. 412.Google Scholar
  42. Zacharov, I., Influence des Perseides sur la Transparence Atmospherique, Bull. Astron. Inst. Czechosl., 1952, vol. 3, p. 82.Google Scholar
  43. Zadorozhny, A.M., Effects of Charged Dust on Mesospheric Electrical Structure, Adv. Space Res., 2001, vol. 28, no. 7, pp. 1059–1064.CrossRefGoogle Scholar
  44. Zadorozhny, A.M. and Tyutin, A.A., Effects of Geomagnetic Activity on the Mesospheric Electric Fields, Ann. Geophys., 1998, vol. 16, pp. 1544–1551.CrossRefGoogle Scholar
  45. Zhang, H.J., Approximate Calculation of Extinction Coefficient, Physics D: Appl. Phys., 1990, vol. 23, pp. 1735–1737.CrossRefGoogle Scholar
  46. Zuev, V.E. and Kabanov, M.V., Optika atmosfernogo aerozolya (Atmospheric Aerosol Optics), Leningrad: Gidroizdat, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Pulkovo ObservatoryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg Branch of the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave PropagationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations