Skip to main content
Log in

Reconstruction of the Earth’s surface temperature based on data of deep boreholes, global warming in the last millennium, and long-term solar cyclicity. Part 2. Experimental data analysis

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The effect of the natural factors (solar activity) on the long-term variations of global temperatures has been analyzed based on studying the borehole thermal regime in a time interval of 1000 years ago. It has been indicated that the temperatures started rising about 500 rather than 150 years ago as adherents of the anthropogenic impact on climate consider. The temperature maximum, the amplitude of which is larger than the present-day rise of temperature, is determined about 1000 years ago. The appearance of this maximum corresponds to the time interval of a long-term increase in solar activity according to the data of the 14C and 10Be cosmogenic isotopes. The stabilization of the global temperature in the last decades at a constant increase in the amount of greenhouse gases in the atmosphere contradicts the concept, according to which an increase in the global temperature in the last decades is only explained by the anthropogenic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Beltrami and E. Bourlon, “Ground Warming Patterns in the Northern Hemisphere During the Last Five Centuries,” Earth Planet. Sci. Lett. 227, 169–177 (2004).

    Article  Google Scholar 

  • L. Bodri and V. Cermak, “Climate Change of the Last Millennium Inferred from Temperature Boreholes: Regional Patterns of Climatic Changes in the Czech Republic—Part III,” Global Planet. Change 21, 225–235 (1999).

    Article  Google Scholar 

  • D. Dahl-Jensen, R. Mosegaard, N. Gundestrup, et al., “Past Temperatures Directly from the Greenland Ice Sheet,” Science 282(5387), 268–271 (1998).

    Article  Google Scholar 

  • D. Yu. Demezhko and I. V. Golovanova, “Climatic Changes in the Urals over the Past Millennium—an Analysis of Geothermal and Meteorological Data,“ Clim. Past 3, 237–242 (2007).

    Article  Google Scholar 

  • V. A. Dergachev and O. M. Raspopov, “Long-Term Solar Activity as a Controlling Factor of Global Warming in the 20th Century,” Soln.-Zemn. Fiz. 2(12), 272–275 (2008).

    Google Scholar 

  • V. A. Dergachev and O. M. Raspopov, “Long-Term Processes on the Sun, Responsible for the Tendency toward a Change in the Solar Radiation and the Earth’s Surface Temperature,” Geomagn. Aeron. 40(1), 9–14 (2000).

    Google Scholar 

  • V. A. Dergachev and O. M. Raspopov, “Reconstruction of the Earth’s Surface Temperature Based on Data of Deep Boreholes, Global Warming in the Last Millennium, and Long-Term Solar Cyclicity. Part 1. Experimental Data,” Geomagn. Aeron. 50(3), 401–411 (2010) [Geomagn. Aeron. 50 (3), 383–392 (2010)].

    Google Scholar 

  • V. A. Dergachev, “Concentration of Cosmogenic Radiocarbon in the Earth’s Atmosphere and Solar Activity during the Last Millenia,” Geomagn. Aeron. 36(2), 49–60 (1996) [Geomagn. Aeron. 36, 179–186 (1996)].

    Google Scholar 

  • V. A. Dergachev, “Effect of Solar Activity on Climate,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70(10), 1544–1548 (2006).

    Google Scholar 

  • V. A. Dergachev, O. M. Raspopov, and H. Jungner, Global Warming in the 20th Century and Long-Term Solar Activity,” in Proceedings of the All-Russian Annual Conference on Solar Physics “Solar and Solar-Terrestrial Physics-2008,” St. Petersburg, 2008, pp. 91–96.

  • A. Eichler, S. Olivier, K. Henderson, et al., “Temperature Response in the Altai Region Lags Solar Forcing,” Geophys. Res. Lett. 36, L01808 (2009).

    Article  Google Scholar 

  • J. Esper, E. R. Cook, and F. H. Schweingruber, “Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability,” Science 295, 2250–2253 (2002).

    Article  Google Scholar 

  • F. Gonzalez-Rouco, H. Storch, and E. Zorita, “Deep Soil Temperature as Proxy for Surface Air-Temperature in a Coupled Model Simulation of the Last Thousand Years,” Geophys. Res. Lett. 30, GL018264 (2003).

    Article  Google Scholar 

  • W. D. Gosnold, P. E. Todhunter, and W. Schmidt, “The Borehole Temperature Record of Climatic Warming in the Mid-Continent of Layer on the Coastal Plain of the Alaskan Arctic, Permafrost North America,” Glob. Planet. Change 15, 33–45 (1997).

    Article  Google Scholar 

  • R. N. Harris and D. S. Chapman, “Mid-Latitude (30°–60° N) Climatic Warming Inferred by Combining Borehole Temperatures with Surface Air Temperatures,” Geophys. Res. Lett. 28, 747–750 (2001).

    Article  Google Scholar 

  • G. C. Hegerl, T. J. Crowley, W. T. Hyde, and D. J. Frame, “Climate Sensitivity Constrained by Temperature Reconstructions over the Past Seven Centuries,” Nature 440, 1029–1032 (2006).

    Article  Google Scholar 

  • S. P. Huang, H. N. Pollack, and P.-Y. Shen, “Temperature Trends over the Past Five Centuries Reconstructed from Borehole Temperatures,” Nature 403(6771), 756–758 (2000).

    Article  Google Scholar 

  • J. Majorowicz and J. Safanda, “Measured Versus Simulated Transients of Temperature Logs-a Test of Borehole Climatology,” J. Geophys. Eng. 2, 291–298 (2005).

    Article  Google Scholar 

  • J. Majorowicz, S. E. Grasby, G. Ferguson, et al., “Paleoclimatic Reconstructions in Western Canada from Borehole Temperature Logs: Surface Air Temperature Forcing and Groundwater Flow,” Clim. Past 2, 1–10 (2006).

    Article  Google Scholar 

  • A. Mangini, C. Spótl, and P. Verdes, “Reconstruction of Temperature in the Central Alps during the Past 2000 yr from a 18O Stalagmite Record,” Earth Planet. Sci. Lett. 235, 741–751 (2005).

    Article  Google Scholar 

  • M. E. Mann and G. A. Schmidt, “Ground vs. Surface Air Temperature Trends: Implications for Borehole Surface Temperature Reconstructions,” Geophys. Res. Lett. 30(12), 1607 (2003).

    Article  Google Scholar 

  • M. E. Mann and P. D. Jones, “Global Surface Temperature over the Past Two Millennia,” Geophys. Res. Lett. 30(15), 1820 (2003).

    Article  Google Scholar 

  • M. E. Mann, R. S. Bradley, and M. K. Hughes, “Northern Hemisphere Temperatures during the Past Millennium: Inferences, Uncertainties and Limitations,” Geophys. Res. Lett. 26, 759–762 (1999).

    Article  Google Scholar 

  • M. E. Mann, S. Rutherford, R. S. Bradley, et al., “Optimal Surface Temperature Reconstructions Using Terrestrial Borehole Data,” J. Geophys. Res. 108(D7), JD002532 (2003).

    Article  Google Scholar 

  • M. E. Mann, Z. Zhang, M. K. Hughes, et al., “Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia,” Proc. Nat. Acad. Sci. 105(36), 13 252–13 257 (2008).

    Article  Google Scholar 

  • A. Moberg, D. M. Sonechkin, K. Holmgren, et al., “Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data,” Nature 433, 613–617 (2005).

    Article  Google Scholar 

  • R. Muscheler, F. Joos, J. Beer, et al., “Solar Activity during the Last 1000 yr Inferred from Radionuclide Records,” Quat. Sci. Rev. 26, 82–97 (2007).

    Article  Google Scholar 

  • M. M. Naurzbaev and E. A. Vaganov, “Variation of Early Summer and Annual Temperature in East Taimyr and Putoran (Siberia) over the Past Two Millennia Inferred from Tree Rings,” J. Geophys. Res. 105D, 7317–7326 (2000).

    Article  Google Scholar 

  • D. Nitoiu and H. Beltrami, “Subsurface Thermal Effects of Land Use Changes,” J. Geophys. Res. 110, JF000151 (2005).

    Article  Google Scholar 

  • H. N. Pollack and J. E. Smerdon, “Borehole Climate Reconstructions: Spatial Structure and Hemispheric Averages,” J. Geophys. Res. 109D, 11106 (2004).

    Article  Google Scholar 

  • H. N. Pollack and S. P. Huang, “Climate Reconstruction from Subsurface Temperatures,” Annual Rev. Earth Planet. Sci 28, 339–365 (2000).

    Article  Google Scholar 

  • M. I. Pudovkin, “Influence of Solar Activity on the Lower Atmosphere State,” Int. J. Geomagn. Aeron., GI2007 (2004).

  • G. M. Raisbeck, F. Yiou, J. Jouzel, and J.-R. Petit, “10Be and 2H in Polar Ice Cores as a Probe of the Solar Variability’s Influence on Climate,” Philos. Trans. R. Soc. A (London) 300, 463–470 (1990).

    Article  Google Scholar 

  • O. M. Raspopov and V. A. Dergachev, “∼200-Year Cosmic Ray Variations, Modulated by Solar Activity, and Their Climatic Response,” Izv. Akad. Nauk, Ser. Fiz. 71(7), 1047–1050 (2007).

    Google Scholar 

  • O. M. Raspopov and V. A. Dergachev, “Manifestation of the Maunder Solar Activity Mode 2700 Years Ago and Its Climatic Response,” in Proceedings of the 7th Pulkovo International Conference on Solar Physics “Climatic and Environmental Aspects of Solar Activity, St. Petersburg,2003, pp. 389–394.

  • O. M. Raspopov, V. A. Dergachev, and T. Kolström, “Cosmic Ray Variations and Climate Changes at High Latitudes during the Last 500 Years,” Izv. Akad. Nauk, Ser. Fiz. 69(6), 893–89 (2005).

    Google Scholar 

  • P. J. Reimer, M. G. L. Baillie, E. Bard, et al., “IntCal04 Atmospheric Radiocarbon Age Calibration, 26-0 ka BP,” Radiocarbon 46, 1026–1058 (2004).

    Google Scholar 

  • G. A. Schmidt and M. E. Mann, “Reply to Comment on “Ground vs. Surface Air Temperature Trends: Implications for Borehole Surface Temperature Reconstructions,” Ed. by D. Chapman et al., Geophys. Res. Lett. 31, L07206 (2004).

    Google Scholar 

  • J. E. Smerdon, H. N. Pollack, V. Cermak, et al., “Air-Ground Temperature Coupling and Subsurface Propagation of Annual Temperature Signals,” J. Geophys. Res. 109D, 21107 (2004).

    Article  Google Scholar 

  • M. Stuiver and P. D. Quay, “Changes in Atmospheric Carbon-14 Attributed to a Variable Sun,” Science 207, 11–19 (1980).

    Article  Google Scholar 

  • I. G. Usoskin, K. Mursula, S. K. Solanki, M. Schuessler, and G. A. Kovaltsov, “A Physical Reconstruction of Cosmic Ray Intensity Since 1610,” J. Geophys. Res. 107, JA009343 (2002).

    Article  Google Scholar 

  • S. S. Vasiliev and V. A. Dergachev, “The ∼ 2400-Year Cycle in Atmospheric Radiocarbon Concentration: Bispectrum of 14C Data over the Last 8000 Years,” Ann. Geophys. 20, 115–120 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Dergachev, O.M. Raspopov, 2010, published in Geomagnetizm i Aeronomiya, 2010, Vol. 50, No. 3, pp. 412–422.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dergachev, V.A., Raspopov, O.M. Reconstruction of the Earth’s surface temperature based on data of deep boreholes, global warming in the last millennium, and long-term solar cyclicity. Part 2. Experimental data analysis. Geomagn. Aeron. 50, 393–402 (2010). https://doi.org/10.1134/S001679321003014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001679321003014X

Keywords

Navigation