Geomagnetism and Aeronomy

, Volume 50, Issue 3, pp 383–392

Reconstruction of the Earth’s surface temperature based on data of deep boreholes, global warming in the last millennium, and long-term solar cyclicity. Part 1. Experimental data

  • V. A. Dergachev
  • O. M. Raspopov


The most reliable pattern of climate changes is obtained using data of instrumental observations at the network of meteorological stations. However, the series of such data have short timescales (about 150 years). Indirect data from natural archives make it possible to judge specific features of climate changes in the more distant past. In contrast to indirect methods, when data are related to temperature through statistical correlations with air temperature, the borehole geothermal method makes it possible to directly determine the surface air temperature. The reconstructions of the temperature obtained using different indirect data for the Northern Hemisphere have been compared with the surface air temperature reconstructions based on the data of borehole thermometry and solar activity variations, and the possibilities of using the method in order to reconstruct long-term trends in climate changes have been indicated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Beltrami, L. Cheng, and J. C. Mareschal, “Simultaneous Inversion of Borehole Temperature Data for Determination of Ground Surface Temperature History,” Geophys. J. Int. 129, 311–318 (1997).CrossRefGoogle Scholar
  2. L. Bodri and V. Cermak, “Climate Change of the Last Millennium Inferred from Temperature Boreholes: Regional Patterns of Climatic Changes in the Czech Republic — Part III,” Global and Planetary Change 21, 225–235 (1999).CrossRefGoogle Scholar
  3. G. D. Clow, “The Extent of Temporal Smearing in Surface Temperature Histories Inferred from Borehole Temperature Measurements,” Global Planet. Change 98, 81–86 (1992).CrossRefGoogle Scholar
  4. A. Correia and J. Safanda, “Preliminary Ground Surface Temperature History in Mainland Portugal Reconstructed from Borehole Temperature Logs,” Tectonophysics 306, 269–275 (1999).CrossRefGoogle Scholar
  5. K. M. Cuffey and G. D. Clow, “Temperature, Accumulation and Ice Sheet Elevation in Central Greenland through the Last Deglacial Transition,” J. Geophys. Res. C 102, 26 383–26 396 (1997).Google Scholar
  6. D. Dahl-Jensen, R. Mosegaard, N. Gundestrup, et al., “Past Temperatures Directly from the Greenland Ice Sheet,” Science 282(5387), 268–271 (1998).CrossRefGoogle Scholar
  7. N. M. Datsenko and D. M. Sonechkin, “On the Reliability of 1000-Year Reconstructions of the Surface Air Temperature Variations in the Northern Hemisphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(6), 797–803 (2008).Google Scholar
  8. V. A. Dergachev and V. S. Veksler, Application of the Radiocarbon Method for Studying the Natural Environment of the Past (FTI Akad. Nauk SSSR, Leningrad, 1991) [in Russian].Google Scholar
  9. V. A. Dergachev, O. M. Raspopov, and H. Jungner, “Global Warming in the 20th Century and Long-Term Solar Activity,” in Proceedings of the All-Russian Annual Conference on Solar Physics “Solar and Solar-Terrestrial Physics-2008”, St. Petersburg, 2008, pp. 91–96.Google Scholar
  10. J. Esper, E. R. Cook, and F. H. Schweingruber, “Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability,” Science 295, 2250–2253 (2002).CrossRefGoogle Scholar
  11. R. N. Harris and D. S. Chapman, “Mid-Latitude (30°–60° N) Climatic Warming Inferred by Combining Borehole Temperatures with Surface Air Temperatures,” Geophys. Res. Lett. 28(5), 747–750 (2001).CrossRefGoogle Scholar
  12. G. C. Hegerl, T. J. Crowley, W. T. Hyde, and D. J. Frame, “Climate Sensitivity Constrained by Temperature Reconstructions over the Past Seven Centuries,” Nature 440, 1029–1032 (2006).CrossRefGoogle Scholar
  13. W. O. Hotchkiss and L. R. Ingersol, “Post Glacial Time Calculation from Recent Measurements in the Calumet Copper Mine,” J. Geol. 42, 113–142 (1934).CrossRefGoogle Scholar
  14. S. P. Huang, H. N. Pollack, and P.-Y. Shen, “Temperature Trends over the Past Five Centuries Reconstructed from Borehole Temperatures,” Nature 403(6771), 756–758 (2000).CrossRefGoogle Scholar
  15. C. Idso and S. F. Singer, Climate Change Reconsidered: 2009 Report of the Nongovernment Panel on Climate Change (NIPCC) (The Heartland Inst. Chicago, 2009).Google Scholar
  16. IPCC Third Assessment Report: Climate Change 2001 (Univ. Press, Cambridge, 2001).Google Scholar
  17. IPCC WGI Fourth Assessment Report. Climate Change 2007 (2007).Google Scholar
  18. A. H. Lachenbruch and B. V. Marshall, “Changing Climate: Geothermal Evidence from Permafrost in the Alaskan Arctic,” Science 234(4777), 689–696 (1986).CrossRefGoogle Scholar
  19. A. C. Lane, “Geotherms from the Lake Superior Copper Country,” Bull. Geol. Soc. Am. 34, 703–720 (1923).Google Scholar
  20. C. Loehle and H. McCulloch, “Correction to: A 2000-Year Global Temperature Reconstruction Based on Non-Tree Ring Proxies,” Energy Environ. 19, 93–100 (2008).CrossRefGoogle Scholar
  21. J. A. Majorowicz, J. Safanda, R. N. Harris, and W. R. Skinner, “Large Ground Surface Temperature Changes of the Last Three Centuries Inferred from Borehole Temperatures in the Southern Canadian Prairies, Saskatchewan,” Global Planet. Change 20, 227–241 (1999).CrossRefGoogle Scholar
  22. J. Majorowicz, S. E. Grasby, G. Ferguson, et al., “Paleoclimatic Reconstructions in Western Canada from Borehole Temperature Logs: Surface Air Temperature Forcing and Groundwater Flow,” Clim. Past 2, 1–10 (2006).CrossRefGoogle Scholar
  23. M. E. Mann and P. D. Jones, “Global Surface Temperature over the Past Two Millennia,” Geophys. Res. Lett. 30(15), GL017814 (2003).CrossRefGoogle Scholar
  24. M. E. Mann, R. S. Bradley, and M. K. Hughes, “Global-Scale Temperature Patterns and Climate Forcing over the Past Six Centuries,” Nature 392, 779–787 (1998).CrossRefGoogle Scholar
  25. M. E. Mann, R. S. Bradley, and M. K. Hughes, “Northern Hemisphere Temperatures during the Past Millennium: Inferences, Uncertainties, and Limitations,” Geophys. Res. Lett. 26(6), 759–762 (1999).CrossRefGoogle Scholar
  26. M. E. Mann, Z. Zhang, M. K. Hughes, et al., “Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia,” Proc. Nat. Acad. Sci. 105(36), 13 252–13 257 (2008).CrossRefGoogle Scholar
  27. S. McIntyre and R. McKitrick, “Corrections to the Mann et al. (1998) Proxy Data Base and Northern Hemispheric Average Temperature Series,” Energy Environ. 14, 751–771 (2003).CrossRefGoogle Scholar
  28. S. McIntyre and R. McKitrick, “Hockey Sticks, Principal Components, and Spurious Significance,” Geophys. Res. Lett. 32, L03710 (2005).CrossRefGoogle Scholar
  29. A. Moberg, D. M. Sonechkin, K. Holmgren, et al., “Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data,“ Nature 433, 613–617 (2005).CrossRefGoogle Scholar
  30. N. Nicholls, D. Collins, B. Trewin, and P. Hope, “Historical Instrumental Climate Data for Australia-Quality and Utility for Palaeoclimatic Studies,” J. Quat. Sci. 21, 681–688 (2006).CrossRefGoogle Scholar
  31. H. N. Pollack and J. E. Smerdon, “Borehole Climate Reconstructions: Spatial Structure and Hemispheric Averages,” J. Geophys. Res. 109D, 11106 (2004).CrossRefGoogle Scholar
  32. H. N. Pollack and S. P. Huang, “Climate Reconstruction from Subsurface Temperatures,” Ann. Rev. Earth Planet. Sci. 28, 339–365 (2000).CrossRefGoogle Scholar
  33. H. N. Pollack, H. Shaopeng, and J. E. Smerdon, “Five Centuries of Climate Change in Australia: The View from Underground,” J. Quat. Sci. 21, 701–706 (2006).CrossRefGoogle Scholar
  34. H. N. Pollack, S. Huang, and P.-Y. Shen, “Climate Change Record in Subsurface Temperatures: A Global Perspective,” Science 282, 279–281 (1998).CrossRefGoogle Scholar
  35. G. M. Raisbeck, F. Yiou, J. Jouzel, and J.-R. Petit, “10Be and 2H in Polar Ice Cores as a Probe of the Solar Variability’s Influence on Climate,” Philos. Trans. R. Soc. (London), A 300, 463–470 (1990).CrossRefGoogle Scholar
  36. N. Scafetta and D. J. West, “Phenomenological Reconstructions of the Solar Signature in the Northern Hemisphere Surface Temperature Records Since 1600,” J. Geophys. Res. 112, D24S03 (2007).CrossRefGoogle Scholar
  37. P. Y. Shen and A. E. Beck, “Least Squares Inversion of Borehole Temperature Measurements in Functional Space,” J. Geophys. Res. 96, 19 965–19 979 (1991).CrossRefGoogle Scholar
  38. M. Stuiver and P. D. Quay, “Changes in Atmospheric Carbon-14 Attributed to a Variable Sun,” Science 207, 11–19 (1980).CrossRefGoogle Scholar
  39. M. Stuiver, P. J. Reimer, T. F. Braziunas, et al., “INTCAL98 Radiocarbon Age Calibration, 24 000-0 Cal BP,” Radiocarbon 40, 1041–1083 (1998).Google Scholar
  40. I. G. Usoskin, K. Mursula, S. K. Solanki, M. Schuessler, and G. A. Kovaltsov, “A Physical Reconstruction of Cosmic Ray Intensity Since 1610,” J. Geophys. Res. 107, JA009343 (2002).Google Scholar
  41. E. J. Wegman, D. W. Scott, and Y. H. Said, Ad Hoc Committee Report on The: “Hockey Stick” Global Climate Reconstruction. Comm. on Energy and Commer. and Subcomm. on Oversight and Invest (U.S. House of Representatives, Washington, DC, 2006).Google Scholar
  42. H. von Storch and E. Zorita, “Comment on Hockey Sticks, Principal Components, and Spurious Significance, by S. McIntyre and R. McKitrick,” Geophys. Res. Lett. 32, L20701 (2005).CrossRefGoogle Scholar
  43. H. von Storch, E. Zorita, J. M. Jones,, Y. Dmitriev, et al., “Reconstructing Past Climate from Noisy Data,” Science 306, 679–682 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. A. Dergachev
    • 1
  • O. M. Raspopov
    • 2
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations