Geomagnetism and Aeronomy

, Volume 50, Issue 2, pp 243–255 | Cite as

Disturbances of the topside ionosphere caused by typhoons

  • N. V. Isaev
  • V. M. Kostin
  • G. G. Belyaev
  • O. Ya. Ovcharenko
  • E. P. Trushkina
Article

Abstract

The measurements on board the Cosmos-1809 satellite of various parameters of the topside ionosphere plasma during more than ten typhoons in various regions are analyzed. It is shown that specific zones of increased pressure of the electron gas, electric field, and intense ion oscillations are formed during the intensification stage. In some cases the “typhoon eye” is formed over the tropical depression zone in the ionosphere, that is, the region with sharply decreased plasma density and pressure is observed a day and more prior to the moment when it happens in the atmosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. S. Baryshnikova, G. M. Zaslavsky, E. A. Lupyyan, et al., “Fractal Analysis of the Pre-Hurricane Atmosphere from Satellite Data,” Adv. Space Res. 9(7), 405–408 (1989).CrossRefGoogle Scholar
  2. V. M. Chmyrev, N. V. Isaev, S. V. Bilichenko, and G. A. Stanev, “Observation by Space-Borne Detectors of Electric Fields and Hydromagnetic Waves in the Ionosphere over an Earthquake Center,” Phys. Earth Planet. Inter. 57, 110 (1989).CrossRefGoogle Scholar
  3. Equipment for Studying the Upper Ionosphere, Ed. by G. V. Vasil’ev and Yu. V. Kushnerevskii (IZMIRAN, Moscow, 1980) [in Russian].Google Scholar
  4. G. L. Gdalevich, B. N. Gorozhankin, I. S. Kutiev, et al., “Studies of the Equatorial Anomaly of the F Region and Topside Ionosphere Using Spherical Ion Traps,” Kosm. Issled. 11(2), 245–253 (1973).Google Scholar
  5. A. V. Gurevich, “Nonlinear Phenomena in the Ionosphere,” Usp. Fiz. Nauk 177(11), 1145 (2007).CrossRefGoogle Scholar
  6. R. Y. Holzworth, M. S. Kelley, C. L. Siefring, et al., “Electrical Measurements in the Atmosphere and Ionosphere over an Active Storm. 2. Direct Current Electric Fields and Conductivity,” J. Geophys. Res. 90A, 9824–9830 (1985).CrossRefGoogle Scholar
  7. N. V. Isaev, G. G. Belyaev, E. P. Trushkina, and V. M. Kostin, “DC Electric Field, ULF-VLF Emissions, Plasma Density in the Ionosphere and Its Response on Natural Hazards and Man-Made Processes,” in Proceedings of AIS-2008 “Atmosphere, Ionosphere, Safety,” Kaliningrad, 2008, pp. 82–83.Google Scholar
  8. N. V. Isaev, G. L. Gdalevich, N. P. Benkova, V. Gubsky, E. P. Trushkina, E. F. Kozlov, N. I. Samorokin, et al., “Auroral Electric Field Penetration into the Middle-Latitude Trough,” Adv. Space Res. 7(8), 59–63 (1987).CrossRefGoogle Scholar
  9. N. V. Isaev, V. M. Sorokin, V. M. Chmyrev, et al., “Disturbance of the Electric Field in the Ionosphere by Sea Storms and Tsunami,” Kosm. Issled. 40(6), 591–597 (2002).Google Scholar
  10. N. V. Isaev, V. M. Sorokin, V. M. Chmyrev, and O. N. Serebryakova, “Ionospheric Electric Fields Related to Sea Storms and Typhoons,” Geomagn. Aeron. 42(5), 670–675 (2002) [Geomagn. Aeron. 42, 638–643 (2002)].Google Scholar
  11. N. V. Isaev, V. Sorokin, and V. M. Chmyrev, “Sea Storm Electrodynamic Effects in the Ionosphere,” in Proceedings of the International Workshop on Seismo-Electromagnetics of NASDA, Tokyo, 2000, p. 42.Google Scholar
  12. M. S. Kelley, C. L. Siefring, R. F. Pfaff, et al., “Electrical Measurements in the Atmosphere and Ionosphere over an Active Storm. 1. Campaign Overview and Initial Ionospheric Results,” J. Geophys. Res. 90, 9815–9823 (1985).CrossRefGoogle Scholar
  13. V. M. Kostin and V. N. Murashev, “Experimental Studies of the Possibilities of the Satellite Monitoring of Underground Nuclear Tests,” in Produced by the Atomic Age, Ed. by A. P. Vasil’ev (SSK MO, Moscow), Part 3, pp. 178–191 (2002) [in Russian].Google Scholar
  14. Meteorological Effects in the Ionosphere, Ed. by A. D. Danilov et al. (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  15. V. V. Migulin, V. I. Larkina, N. G. Sergeeva, and B. V. Senin, “Reflection of Regional Lithospheric Structures in Satellite Observations of Electromagnetic Emissions,“ Dokl. Akad. Nauk 360(6), 814–818 (1998).Google Scholar
  16. Yu. M. Mikhailov, G. A. Mikhailova, O. V. Kapustina, et al., “Possible Atmospheric Effects in the Lower Ionosphere according to Atmospheric Radio Noise Observations on Kamchatka during Tropical Cyclones,” Geomagn. Aeron. 45(6), 824–839 (2005) [Geomagn. Aeron. 45,778–792 (2005)].Google Scholar
  17. Yu. M. Mikhailov, G. I. Druzhin, G. A. Mikhailova, and O. V. Kapustina, “Thunderstorm Activity Dynamics during Hurricanes,” Geomagn. Aeron. 46(6), 825–838 (2006) [Geomagn. Aeron. 46, 783–795 (2006)].CrossRefGoogle Scholar
  18. G. A. Mikhailova, Yu. M. Mikhailov, and O. V. Kapustina, “Variations of ULF-VLF Electric Fields in the External Ionosphere over Powerful Typhoons in Pacific Ocean,” Adv. Space Res. 30(11), 2613–2618 (2002).CrossRefGoogle Scholar
  19. G. A. Mikhailova, Yu. M. Mikhailov, and O. V. Kapustina, “ULF-VLF Electric Fields in the External Ionosphere over Powerful Typhoons in Pacific Ocean,” Inter. J. Geomagn. Aeron. 2(2), 153–158 (2000).Google Scholar
  20. R. Raghavarao, S. P. Gupta, R. Sekar, et al., “In Situ Measurements of Winds, Electric Fields and Electron Densities at the Onset of Equatorial Spread F,” J. Atmos. Terr. Phys. 49, 485 (1987).CrossRefGoogle Scholar
  21. V. M. Sorokin, N. V. Isaev, A. K. Yaschenko, V. M. Chmyrev, and M. Hayakawa, “Strong DC Electric Field in the Low Latitude Ionosphere over Typhoons,” J. Atmos. Solar-Terr. Phys. 67(11), 1269–1279 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. V. Isaev
    • 1
  • V. M. Kostin
    • 1
  • G. G. Belyaev
    • 1
  • O. Ya. Ovcharenko
    • 1
  • E. P. Trushkina
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave PropagationRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations