Geomagnetism and Aeronomy

, Volume 50, Issue 1, pp 15–20 | Cite as

Possible manifestation of nonlinear effects when solar activity affects climate changes

  • M. G. Ogurtsov
  • O. M. Raspopov
  • M. Oinonen
  • H. Jungner
  • M. Lindholm


The response of the nonlinear oscillatory system to an insignificant external disturbance has been considered as applied to the effect of solar activity on climatic processes. Based on a simplified model, it has been indicated that the response of a nonlinear oscillator to a weak disturbing impact can be substantial. The oscillator fluctuation spectrum can decrease under the action of a disturbing factor. This means that the effect of an even weak solar or cosmophysical signal to the Earth’s climatic system can lead to significant climate variations if this system is nonlinear. However, it will be rather difficult to identify the solar—climatic nature of these variations because a linear relation between the cause and response is absent.


Solar Activity Solar Cycle Solar Phys Nonlinear Oscillator Fourier Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. A. Barnes, H. H. Sargent, and P. V. Tryon, “Sunspot Cycle Simulation Using Random Noise,” Geochim. Cosmochim. Acta. Suppl. 13, 159–163 (1980).Google Scholar
  2. E. P. Borisenkov, “Development of the Fuel—Energy and Its Effect on Weather and Climate,” Meteorol. Gidrol., No. 2, 3–14 (1977).Google Scholar
  3. E. Brückner, “Klimaschwankunden Seit 1700,” Geographische Abhandlungen 14 (1890).Google Scholar
  4. R. G. Currie and D. P. O’Brien, “Periodic 18.6-Year and Cyclic 10 to 11 Year Signals in Northeastern United States Precipitation Data,” Int. J. Climatol. 8, 255–281 (1988).CrossRefGoogle Scholar
  5. P. Damon and P. Laut, “Pattern of Strange Errors Plagues Solar Activity and Terrestrial Climate Data,” EOS 85(39), 370–374 (2004).CrossRefGoogle Scholar
  6. V. A. Dergachev, Yu. Yu. Kartavykh, M. G. Ogurtsov, and O. M. Raspopov, “Dendroindication of the Effect of Solar Activity on Climate in the Last Millennium, “ Izv. Akad. Nauk, Ser. Geogr., No. 3, 107–114 (2007).Google Scholar
  7. S. S. Drijfhour, R. J. Haarsma, J. D. Opsteegh, and F M. Selten, “Solar-Induced versus Internal Variability in a Coupled Climate Mode,” Geophys. Res. Lett. 26, 205–208 (1999).CrossRefGoogle Scholar
  8. E. Friis-Christensen and K. Lassen, “Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate,” Nature 254, 698–701 (1991).Google Scholar
  9. G. E. Kocharov, M. G. Ogurtsov, and G. A. M. Dreschhoff, “On the Quasi Five Year Variation of Nitrate Abundance in Polar Ice and Solar Flare Activity in the Past,” Solar Phys. 188(1), 187–190 (1999).CrossRefGoogle Scholar
  10. P. Laut, “Solar Activity and Terrestrial Climate: An Analysis of Some Purported Correlations,” J. Atmos. Solar-Terr. Phys. 65, 801–811 (2003).CrossRefGoogle Scholar
  11. M. E. Mann, J. Park, and R. S. Bradley, “Global Interdecadal and Century-Scale Climate Oscillations during the Past Five Centuries,” Nature 378, 266–270 (1995).CrossRefGoogle Scholar
  12. N. J. Mantua and S. R. Hare, “The Pacific Decadal Oscillation,” J. Oceanogr. 58 35–44 (2002).CrossRefGoogle Scholar
  13. N. Marsh and H. Svensmark, “Solar Influence on Earth’s Climate,” Space. Sci. Rev. 107 317–325 (2003).CrossRefGoogle Scholar
  14. G. A. Meehl, J. M. Arblaster, and W. G. Strand, “Global Scale Decadal Climate Variability,” Geophys. Res. Lett. 25 3983–3986(1998).CrossRefGoogle Scholar
  15. B. Mendoza, “Total Solar Irradiance and Climate,” Adv. Space Res. 35, 882–896 (2005).CrossRefGoogle Scholar
  16. A. S. Monin, Weather Forecast as a Physical Problem, (Nauka, Moscow, 1969) [in Russian].Google Scholar
  17. M. G. Ogurtsov, G. E. Kocharov, M. Lindholm, J. Meriläinen, M. Eronen, and Yu. A. Nagovitsyn, “Evidence of Solar Variation in Tree-Ring-Based Climate Reconstructions,” Solar Phys. 205 403–417 (2002).CrossRefGoogle Scholar
  18. M. G. Ogurtsov, G. E. Kocharov, M. Lindholm, M. Eronen, and Yu. A. Nagovitsyn, “Solar Activity and Regional Climate,” Radiocarbon 43(2a), 439–447 (2001).Google Scholar
  19. M. G. Ogurtsov, H. Jungner, G. E. Kocharov, et al., “Nitrate Concentration in Greenland Ice: An Indicator of Changes in Fluxes of Solar and Galactic High-Energy Particles,” Solar Phys. 222 177–190 (2004).CrossRefGoogle Scholar
  20. M. G. Ogurtsov, H. Jungner, and M. Lindholm, “A Potential Century-Scale Rhythm in Six Major Paleoclimatic Records in the Northern Hemisphere,” Geograf. Ann. 89A(2), 129–136 (2007a).CrossRefGoogle Scholar
  21. M. G. Ogurtsov, H. Jungner, M. Lindholm, S. Helama, and V. A. Dergachev, “Quasi-Secular Cyclicity in Climate of the Earth’s Northern Hemisphere and Its Possible Relation to Solar Activity Variations,” Soln.—Zemn. Fiz., No. 10, 10–15 (2007b).Google Scholar
  22. M. G. Ogurtsov, O. M. Raspopov, S. Helama, et al., “Climatic Variability along a North—South Transect of Finland over the Last 500 Years: Signature of Solar Influence or Internal Climate Oscillations?,” Geograf. Ann. 90A(2), 141–150 (2008).CrossRefGoogle Scholar
  23. M. I. Pudovkin and O. M. Raspopov, “Mechanism by Which Solar Activity Affects the State of the Lower Atmosphere,” Geomagn. Aeron. 32(5), 1–10 (1992).Google Scholar
  24. M. I. Pudovkin, “Effect of Solar Activity on the State of the Lower Atmosphere and Weather,” Soros Obraz. Zh., No. 10, 106–114 (1996).Google Scholar
  25. M. I. Pudovkin, N. Ya. Vinogradova, and S. V. Veretenenko, “Variations of Atmospheric Transparency during the Bursts of Solar Protons,” Geomagn. Aeron. 37(2), 124–126(1997).Google Scholar
  26. O. M. Raspopov, N. V. Lovelius, O. I. Shumilov, and E. A. Kasatkina, “The Nonlinear Character of the Effect of Solar Activity on Climatic Processes, ” Geomagn. Aeron. 41(3), 58–63 (2001) [Geomagn. Aeron. 41,407-412(2001)].Google Scholar
  27. O. M. Raspopov, V. A. Dergachev, J. Esper, O. V. Kozyreva, D. Frank, M. Ogurtsov, et al., “The Influence of the de Vries (~200-Year) Solar Cycle on Climate Variations: Results from the Central Asian Mountains and Their Global Link,” Palaegeogr. Palaeoclimatol. Palaeoecol. 259, 6–16 (2008).Google Scholar
  28. O. M. Raspopov, V. A. Dergachev, and T. Kolström, “Hale Cyclicity of Solar Activity and Its Relation to Climate Variability,” Solar Phys. 224, 455–463 (2004).CrossRefGoogle Scholar
  29. F. A. Roig, C. Le-Quesne, J. A. Boninsegna, et al., “Climate Variability 50 000 Years Ago in Mid-Latitude Chile as Reconstructed from Tree Rings,” Nature 410, 567–570 (2001).CrossRefGoogle Scholar
  30. B. A. Sazonov, “Brückner Cycle of Droughts,” in Criteria and Characteristics of Drought Phenomena in the SSSR, (Gidrometeoizdat, Leningrad, 1979), Issue. 403, p. 82 [in Russian].Google Scholar
  31. M. V. Shabalova and S. L. Weber, “Patterns of Temperature Variability on Multidecadal to Centennial Timescales,” J. Geophys. Res. 104D, 31023–31041 (1999).CrossRefGoogle Scholar
  32. S. V. Veretenenko and M. I. Pudovkin, “Variations in the Total Radiation Input as a Possible Energy Source for Long-Term Effects of Solar Activity on Atmospheric Circulation,” Geomagn. Aeron. 40(1), 77–83 (2000) [Geomagn. Aeron. 40, 70-76 (2000)].Google Scholar
  33. S. Veretenenko and P. Thejll, “Cyclone Regeneration in the North Atlantic Intensified by Energetic Solar Proton Events,” Adv. Space Res. 35, 470–475 (2005).CrossRefGoogle Scholar
  34. Yu. I. Vitinsky, M. Kopetsky, and G. V. Kuklin, Sunspot Activity Statistics, (Nauka, Moscow, 1986) [in Russian].Google Scholar
  35. W. B. White, M. D. Dettinger, and D. R. Cayan, “Global Average Upper Ocean Temperature Response to Changing Solar Irradiance: Exciting the Internal Decadal Mode,” in Proceedings of the 1st Solar and Space Weather Euroconference. The Solar Cycle and Terrestrial Climate, Santa Cruze de Tenerife, Tenerife, Spain,, (2000), pp. 470–475.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. G. Ogurtsov
    • 1
    • 2
  • O. M. Raspopov
    • 3
  • M. Oinonen
    • 4
  • H. Jungner
    • 4
  • M. Lindholm
    • 5
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Main Astronomical (Pulkovo) ObservatoryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Dating LaboratoryUniversity of HelsinkiHelsinkiFinland
  5. 5.MetlaRovaniemiFinland

Personalised recommendations