Geomagnetism and Aeronomy

, Volume 49, Issue 2, pp 252–262 | Cite as

Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content

  • A. A. Namgaladze
  • M. V. Klimenko
  • V. V. Klimenko
  • I. E. Zakharenkova


The physical mechanism by which the regions with increased or decreased total electron content, registered by measuring delays of GPS satellite signals before strong earthquakes, originate in the ionosphere has been proposed. Vertical plasma transfer in the ionospheric F 2 region under the action of the zonal electric field is the main disturbance formation factor. This field should be eastward, generating the upward component of plasma electromagnetic drift, in the cases of increased total electron content at midlatitudes and deepened minimum of the F 2 layer equatorial anomaly. Upward plasma drift increases electron density due to a decrease in the O+ ion loss rate at midlatitudes and decreases this density above the equator due to an enhancement of the fountain effect (plasma discharge into the equatorial anomaly crests). The pattern of the spatial distribution of the seismogenic electric field potential has been proposed. The eastward electric field can exist in the epicentral region only if positive and negative electric charges are located at the western and eastern boundaries of this region, respectively. The effectiveness of the proposed mechanism was studied by modeling the ionospheric response to the action of the electric field generated by such a charge configuration. The results of the numerical computations indicated that the total electron content before strong earthquakes at middle and low latitudes is in good agreement with the observations.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. L. Afraimovich, E. I. Astafieva, M. B. Gokhberg, V. M. Lapshin, V. E. Permyakova, G. M. Steblov, and S. L. Shalimov, “Variations of the Total Electron Content in the Ionosphere from GPS Data Recorded during the Hector Mine Earthquake of October 16, 1999, California,” Russian J. Earth Sci. 6(5), 339–354 (2004).CrossRefGoogle Scholar
  2. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].Google Scholar
  3. V. M. Chmyrev, N. V. Isaev, S. V. Bilichenko, and G. A. Stanev, “Observation by Space-Borne Detectors of Electric Fields and Hydromagnetic Waves in the Ionosphere over an Earthquake Center,” Phys. Earth Planet. Inter. 57, 110–114 (1989).CrossRefGoogle Scholar
  4. A. Kh. Depueva and N. M. Rotanova, “Modification of the Low-Latitude and Equatorial Ionosphere before Earthquakes,” Geomagn. Aeron. 40(6), 50–54 (2000) [Geomagn. Aeron. 40, 728–732 (2000)].Google Scholar
  5. A. Kh. Depueva and Yu. Ya. Ruzhin, “Seismoionospheric Fountain-Effect as Analogue of Active Space Experiment,” Adv. Space Res. 15(12), 151–154 (1995).CrossRefGoogle Scholar
  6. A. Kh. Depueva and Yu. Ya. Ruzhin, Preprint No. 82 (1029), IZMIRAN (Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, 1993).Google Scholar
  7. A. Kh. Depueva, A. V. Mikhailov, M. Devi, and A. K. Barbara, “Spatial and Time Variations in Critical Frequencies of the Ionospheric F Region above the Zone of Equatorial Earthquake Preparation,” Geomagn. Aeron. 47(1), 138–142 (2007) [Geomagn. Aeron. 47, 129–133 (2007)].CrossRefGoogle Scholar
  8. M. B. Gokhberg, A. V. Kustov, V. A. Liperovskii, R. Kh. Liperovskaya, E. P. Kharin, and S. L. Shalimov, “On Disturbances in the Ionospheric F Region before Earthquakes,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 4, 12–20 (1988).Google Scholar
  9. V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, “Numerical Simulation of the Electric Field and Zonal Current in the Earth’s Ionosphere: Problem Statement and Test Calculations,” Mat. Model. 18(3), 77–92 (2006).Google Scholar
  10. M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, “Numerical Simulation of the Electric Field and Zonal Current in the Earth’s Ionosphere: The Dynamo Field and Equatorial Electrojet,” Geomagn. Aeron. 46(4), 485–494 (2006) [Geomagn. Aeron. 46, 457–466 (2006)].CrossRefGoogle Scholar
  11. A. Krankowski, I. E. Zakharenkova, and I. I. Shagimuratov, “Response of the Ionosphere to the Baltic Sea Earthquake of September 21, 2004,” Acta Geophys. 54(1), 90–101 (2006).CrossRefGoogle Scholar
  12. V. A. Liperovskii, O. A. Pokhotelov, and S. L. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].Google Scholar
  13. J. Y. Liu, Y. J. Chuo, S. A. Pulinets, H. F. Sai, and X. P. Zeng, “A Study on the TEC Perturbations Prior to the Rei-Li, Chi-Chi and Chia-Yi Earthquakes,” in Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Ed. by M. Hayakawa and O. A. Molchanov (TERRAPUB, Tokyo, 2002), pp. 297–301.Google Scholar
  14. J. Y. Liu, Y. J. Chuo, S. J. Shan, Y. B. Tsai, S. A. Pulinets, and S. B. Yu, “Pre-Earthquake Ionospheric Anomalies Monitored by GPS TEC,” Ann. Geophys. 22, 1585–1593 (2004).Google Scholar
  15. V. B. Lyatsky and Yu. P. Maltsev, Magnetosphere-Ionosphere Coupling (Nauka, Moscow, 1983) [in Russian].Google Scholar
  16. A. A. Namgaladze,
  17. A. A. Namgaladze, I. I. Shagimuratov, I. E. Zakharenkova, O. V. Martynenko, and O. V. Zotov, “Possible Physical Mechanisms of the TEC Enhancements Observed before Earthquakes,” in IUGG XXIV, Perugia, Italy, 2007.Google Scholar
  18. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, I. V. Karpov, V. A. Surotkin, and N. M. Naumova, “Global Numerical Model of the Earth’s Thermosphere, Ionosphere, and Protonosphere,” Geomagn. Aeron. 30(4), 612–619 (1990).Google Scholar
  19. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, I. V. Karpov, F. S. Bessarab, V. A. Surotkin, T. A. Glushchenko, and N. M. Naumova, “Global Model of the Thermosphere-Ionosphere-Protonosphere System,” Pure Appl. Geophys. 127(2/3), 219–254 (1988).CrossRefGoogle Scholar
  20. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, I. V. Karpov, V. A. Surotkin, and N. M. Naumova, “Numerical Modelling of the Thermosphere-Ionosphere-Protonosphere System,” J. Atmos. Terr. Phys. 53(11/12), 1113–1124 (1991).CrossRefGoogle Scholar
  21. V. V. Plotkin, “GPS Detection of Ionospheric Perturbation before the February 13, 2001, El Salvador Earthquake,” Nat. Hazard Earth Syst. Sci. 3, 249–253 (2003).Google Scholar
  22. S. A. Pulinets and A. D. Legen’ka, “Dynamics of the Near-Equatorial Ionosphere prior to Strong Earthquakes,” Geomagn. Aeron. 42(2), 239–244 (2002) [Geomagn. Aeron. 42, 227–232 (2002)].Google Scholar
  23. S. A. Pulinets and K. Boyarchuk, Ionospheric Precursors of Earthquakes (Springer, Berlin, 2004).Google Scholar
  24. S. A. Pulinets, “Strong Earthquakes Prediction Possibility with the Help of Topside Sounding From Satellites,” Adv. Space Res. 21(3), 455–458 (1998).CrossRefGoogle Scholar
  25. S. A. Pulinets, A. D. Legen’ka, T. V. Gaivoronskaya, and V. Kh. Depuev, “Main Phenomenological Features of Ionospheric Precursors of Strong Earthquakes,” J. Atmos. Sol.-Terr. Phys. 65, 1337–1347 (2003).CrossRefGoogle Scholar
  26. S. A. Pulinets, V. A. Alekseev, K. A. Boyarchuk, V. V. Hegai, and V. Kh. Depupev, “Radon and Ionosphere Monitoring as a Means for Strong Earthquakes Forecast,” Il Nuovo Cimento 22C, Nos. 3–4, 621–626 (1999).Google Scholar
  27. S. A. Pulinets, V. V. Hegai, K. A. Boyarchuk, and A. M. Lomonosov, “Atmospheric Electric Field as a Source of Ionospheric Variability,” Usp. Fiz. Nauk 168(5), 582–589 (1998).CrossRefGoogle Scholar
  28. Yu. Ya. Ruzhin and A. Kh. Depueva, “Seismoprecursors in Space as Plasma and Wave Anomalies,” J. Atmos. Electr. 16(3), 251–288 (1996).Google Scholar
  29. Short-Term Prediction of Disastrous Earthquakes Using Radar Ground-Based and Space-Borne Methods, Ed. by V. N. Strakhov and V. A. Liperovskii (OIFZ RAN, Moscow, 1999) [in Russian].Google Scholar
  30. V. M. Sorokin and V. M. Chmyrev, “Electrodynamic Model of Ionospheric Precursors of Earthquakes and Certain Types of Disasters,” Geomagn. Aeron. 42(6), 821–830 (2002) [Geomagn. Aeron. 42, 784–792 (2002)].Google Scholar
  31. V. M. Sorokin, A. K. Yaschenko, and M. Hayakawa, “Formation Mechanism of the Lower-Ionosphere Disturbances by the Atmosphere Electric Current over a Seismic Region,” J. Atmos. Sol.-Terr. Phys. 68, 1260–1268 (2006).CrossRefGoogle Scholar
  32. V. M. Sorokin, V. M. Chmyrev, O. A. Pokhotelov, and V. A. Liperovskii, “Review of the Models of the Lithosphere-Ionosphere Coupling during Earthquake Preparation,” in Short-Term Prediction of Disastrous Earthquakes Using Radar Ground-Based and Space-Borne Methods (OIFZ RAN, Moscow, 1999), pp. 75–98.Google Scholar
  33. V. M. Sorokin, V. M. Chmyrev, and A. K. Yaschenko, “Theoretical Model of DC Electric Field Formation in the Ionosphere Stimulated by Seismic Activity,” J. Atmos. Sol.-Terr. Phys. 67, 1259–1268 (2005).CrossRefGoogle Scholar
  34. T. Yokoyama, M. Yamamoto, R. F. Pfaff, et al., “SEEK-2 Campaign Measurement of the Electric Field in the E-Region and Its Association with the QP Echoes,” in Proceedings of the 112th SGEPSS Fall Meeting, University of Electro-Communications, Tokyo, 2002, pp. 12–13.Google Scholar
  35. I. E. Zakharenkova, A. Krankowski, and I. I. Shagimuratov, “Modification of the Low-Latitude Ionosphere before December 26, 2004 Indonesian Earthquake,” Nat. Hazard Earth Syst. Sci. 6, 817–823 (2006a).CrossRefGoogle Scholar
  36. I. E. Zakharenkova, I. I. Shagimuratov, A. F. Lagovsky, and A. Krankowski, “Variations in the Total Electron Content of the Ionosphere during the Kaliningrad Earthquake of September 21, 2004,” Vestn. Murmansk. Gosud. Tekh. Univ. 9(3), 434–439 (2006).Google Scholar
  37. I. E. Zakharenkova, I. I. Shagimuratov, A. Krankowski, and A. F. Lagovsky, “Ionospheric Precursors Observed during the Mediterranean Region Earthquakes,” in Proceedings of the 18th International Wroclaw Symposium and Exhibition on Electromagnetic Compatibility, 2006b, pp. 85–90.Google Scholar
  38. I. E. Zakharenkova, I. I. Shagimuratov, and A. F. Lagovsky, “Modification of the Ionosphere during Earthquake Preparation according to the Data of the GPS Satellite System,” in Proceedings of the 21th All-Russia Scientific Conference on Radiowave Propagation, Ioshkar-Ola, 2005, Vol. 1, pp. 194–198.Google Scholar
  39. I. E. Zakharenkova, Candidate’s Dissertation in Mathematics and Physics (Kaliningrad, 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. A. Namgaladze
    • 1
  • M. V. Klimenko
    • 2
  • V. V. Klimenko
    • 3
  • I. E. Zakharenkova
    • 3
  1. 1.Murmansk State Technical UniversityMurmanskRussia
  2. 2.Kaliningrad State Technical UniversityKaliningradRussia
  3. 3.Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Western DivisionRussian Academy of SciencesKaliningradRussia

Personalised recommendations