Advertisement

Geomagnetism and Aeronomy

, 48:680 | Cite as

Wavelet analysis of temporal and spatial parameters of the 60-year variation in the geomagnetic field

  • V. V. IvanovEmail author
  • T. N. Bondar’
Article

Abstract

A wavelet analysis and statistical processing of its results have been performed for the series of geomagnetic data at several observatories in Europe, Asia, and North America. It has been noted that the sources of 60-year variations in the geomagnetic field can be divided into two classes with respect to spatial scales. It has been indicated that the sources of these variations are anisotropic. It has been proposed that these variations can be caused by the reconstruction of motions on the surface of the Earth’s liquid core.

PACS numbers

91.25.Le 91.25.ga 

References

  1. 1.
    M. Alexandrescu, D. Gibert and G. Hulot, et al., “Detection of Geomagnetic Jerks Using Wavelet Analysis,” J. Geophys. Res. 100, 12 557–12 572 (1995).CrossRefGoogle Scholar
  2. 2.
    L. Alperovich and V. Zheludev, “Wavelet Transform as a Tool for Detection of Geomagnetic Precursors of Earthquakes,” Phys. Chem. Earth 23(9–10), 965–967 (1998).CrossRefGoogle Scholar
  3. 3.
    N. M. Astaf’eva, “Wavelet Analysis: Theoretical Backgrounds and Application Examples,” Usp. Fiz. Nauk 166(11), 1145–1170 (1996).Google Scholar
  4. 4.
    M. Bat, Spectral Analysis in Geophysics (Elsevier, Amsterdam, 1974; Nedra, Moscow, 1980).Google Scholar
  5. 5.
    S. I. Braginskii, “Analytical Description of Secular Variations in the Geomagnetic Field and Earth Rotation Velocities,” Geomagn. Aeron. 22(1), 115–122 (1982).Google Scholar
  6. 6.
    V. P. D’yakonov, “Wavelets,” in From Theory to Practice (Solon-R, Moscow, 2002) [in Russian].Google Scholar
  7. 7.
    I. Daubechies, “Ten Lectures on Wavelets,” CBMS Ser. Appl. Math. Soc. Ind. Appl. Math. Philadelphia 61 (1992).Google Scholar
  8. 8.
    I. M. Dremin, O. V. Ivanov, and V. A. Nechitailo, “Wavelets and Their Application,” Usp. Fiz. Nauk 171(5), 465–501 (2001).CrossRefGoogle Scholar
  9. 9.
    S. V. Filippov, Preprint No. 3(692), IZMIRAN (Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, 1987).Google Scholar
  10. 10.
    S. V. Filippov, Preprint No. 57(590) IZMIRAN (Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, 1987).Google Scholar
  11. 11.
    D. Gibert, M. Holschneider, and J.-L. Le Mouel, “Wavelet Analysis of the Chandler Wobble,” J. Geophys. Res. 103B, 27 069–27 089 (1998).Google Scholar
  12. 12.
    V. P. Golovkov and G. I. Kolomiitseva, “Morphology of the 60-Year Geomagnetic Field Variations in Europe,” Geomagn. Aeron. 11(4), 674–678 (1971).Google Scholar
  13. 13.
    V. P. Golovkov and G. I. Kolomiitseva, “Division of the Geomagnetic Field Secular Variations on the Time Principle,” Geomagn. Aeron. 10(5), 868–872 (1970).Google Scholar
  14. 14.
    V. P. Golovkov, A. O. Simonyan, and S. R. Sahparonyan, “The Jerk in the Main Geomagnetic Field,” in Proceedings of the OIST-4 Conference, Copenhagen, 2002, Ed. by P. Stanning, pp. 69–74.Google Scholar
  15. 15.
    V. V. Ivanov and N. M. Rotanova, “Wavelet Analysis of the Profile of Magnetic Anomalies Obtained from the MAGSAT Satellite Data,” Geomagn. Aeron. 40(2), 78–83 (2000) [Geomagn. Aeron. 40, 207–212 (2000)].Google Scholar
  16. 16.
    V. V. Ivanov, N. M. Rotanova, T. N. Bondar’, and E. V. Kovalevskaya, “Separation of Signal from Noise and Wavelet Analysis of Phase Jumps in Model Series, Secular Variations, and Variations in Magnetic Storms,” Geomagn. Aeron. 45(3), 421–430 (2005) [Geomagn. Aeron. 45, 396–405 (2005)].Google Scholar
  17. 17.
    V. V. Ivanov, N. M. Rotanova, and E. V. Kovalevskaya, “The Wavelet Analysis as Applied to the Study of Geomagnetic Disturbances,” Geomagn. Aeron. 41(5), 610–618 (2001) [Geomagn. Aeron. 41, 583–591 (2001)].Google Scholar
  18. 18.
    Yu. D. Kalinin and T. S. Rozanova, “11-Year Variations in the Eccentric Geomagnetic Field,” Geomagn. Aeron. 33(3), 188–189 (1993).Google Scholar
  19. 19.
    S. M. Kei and S. L. Marple, “Advanced Methods of Spectral Analysis,” Proc. IEEE 69(11), 5–51 (1981).Google Scholar
  20. 20.
    R. A. Langel, “Main Field,” in Geomagnetism, Ed. by J. A. Jacobs (Academic, London, 1987), pp. 249–512.Google Scholar
  21. 21.
    S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Patt. Anal. Mach. Intell. 11(7), 674–693 (1989).CrossRefGoogle Scholar
  22. 22.
    Y. Meyer, Wavelets and Operators (Cambr. Univ. Press, Cambridge, 1992).Google Scholar
  23. 23.
    I. E. Nachasova and K. S. Burakov, “Geomagnetic Field Variations in Central Asia during the Last 2000 Years: An Analysis of Global Data,” Geomagn. Aeron. 35 (1995).Google Scholar
  24. 24.
    N. E. Papitashvili and N. M. Rotanova, “Maximum Entropy Method and Its Application to an Analysis of Geomagnetic Field Time Series,” Geomagn. Aeron. 19(3), 543 (1979).Google Scholar
  25. 25.
    N. M. Rotanova, N. E. Papitashvili, and A. N. Pushkov, “Space-Time Analysis of 60-Year Geomagnetic Field Variations Based on Data of the Global Network of Observatories,” Geomagn. Aeron. 22(6), 847–851 (1982).Google Scholar
  26. 26.
    N. M. Rotanova, N. E. Papitashvili, and S. V. Filippov, “Introduction to an Analysis of 60-Year Geomagnetic Field Variations Based on Time Series of Spherical Harmonic Coefficients,” Geomagn. Aeron. 23(6), 829–836 (1983).Google Scholar
  27. 27.
    N. M. Rotanova, T. N. Bondar’, and V. V. Ivanov, “Wavelet Analysis of Secular Geomagnetic Variations,” Geomagn. Aeron. 44(2), 276–282 (2004) [Geomagn. Aeron. 44, 252–258 (2004)].Google Scholar
  28. 28.
    N. M. Rotanova, T. N. Bondar’, and V. V. Ivanov, “Time Changes in Secular Geomagnetic Variations,” Geomagn. Aeron. 42(5), 708–720 (2002) [Geomagn. Aeron. 42, 676–687 (2002)].Google Scholar
  29. 29.
    A. O. Simonyan, S. R. Shakhparonyan, and A. S. Oganesyan, “Geomagnetic Field Modeling with Regard to Geomagnetic Jerks,” Geomagn. Aeron. 44(6), 849–856 (2004) [Geomagn. Aeron. 44, 787–794 (2004)].Google Scholar
  30. 30.
    B. M. Yanovskii, Terrestrial Magnetism (Leningr. Gos. Univ., Leningrad, 1978) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave PropagationRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations