Advertisement

Geomagnetism and Aeronomy

, Volume 48, Issue 5, pp 652–673 | Cite as

Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results

  • L. F. ChernogorEmail author
Article

Abstract

Backgrounds of adaptive Fourier transform and analytical wavelet transform have been briefly described in comparison with traditional Fourier transform using a time window. As an example, all three transforms are used to analyze quasiperiodic wave-like processes in the ionosphere, which accompanied the passage of the solar terminator and rocket launch from the Plesetsk site. The advantages of adaptive Fourier transform and analytical wavelet transform as compared to traditional Fourier transform, which make it possible to reliably detect wave-like disturbances against a background of noise at a signal-to-noise ratio not less than 0.1, have been demonstrated.

PACS numbers

94.20.wf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Afraimovich, N. P. Perevalova, and A. V. Plotnikov, “Registration of Ionospheric Responses to Shock Acoustic Waves Generated by Carrier Rocket Launches,” Geomagn. Aeron. 42(6), 790–797 (2002) [Geomagn. Aeron. 42, 790–797 755–762 (2002)].Google Scholar
  2. 2.
    L. A. Akimov, E. I. Grigorenko, V. I. Taran, et al., “Complex Radar and Optic Studies of Dynamic Processes in the Atmosphere and Geocosmos, Caused by the Solar Eclipse of August 11, 1999,” Zarubezh. Radioelektron. Usp. Sovrem. Radioelektron., No. 2, 25–63 (2002).Google Scholar
  3. 3.
    P. R. Arendt, “Ionospheric Undulations Following Apollo 14 Launching,” Nature 231, 438–439 (1971).CrossRefGoogle Scholar
  4. 4.
    V. P. Burmaka, L. S. Kostrov, and L. F. Chernogor, “Statistic Characteristics of Doppler HF Radar Signals during Sounding the Middle Ionosphere Disturbed by Rocket Launches and the Solar Terminator,” Radiofiz. Radioastron. 8(2), 143–162 (2003).Google Scholar
  5. 5.
    V. P. Burmaka, V. I. Taran, and L. F. Chernogor, “Results of Studying Wave-Like Disturbances in the Ionosphere Using the Incoherent Scatter Method,” Usp. Sovrem. Radioelektron., No. 3, 4–35 (2005).Google Scholar
  6. 6.
    V. P. Burmaka, V. I. Taran, and L. F. Chernogor, “Wave-Like Processes in the Ionosphere under Quiet and Disturbed Conditions. 1. Kharkov Incoherent Scatter Radar Observations,” Geomagn. Aeron. 46(2), 193–208 (2006a) [Geomagn. Aeron. 46, 183–198 (2006a)].Google Scholar
  7. 7.
    V. P. Burmaka, V. I. Taran, and L. F. Chernogor, “Wave-Like Processes in the Ionosphere under Quiet and Disturbed Conditions. 2. Analysis of Observations and Simulation,” Geomagn. Aeron. 46(2), 209–218 (2006b) [Geomagn. Aeron. 46, 199–208 (2006b)].CrossRefGoogle Scholar
  8. 8.
    V. P. Burmaka, V. I. Taran, and L. F. Chernogor, “Ion-ospheric Wave Disturbances Accompanied by Rocket Launches against a Background of Natural Transient Processes,” Geomagn. Aeron. 44(4), 518–534 (2004) [Geomagn. Aeron. 44, 476–491 (2004)].Google Scholar
  9. 9.
    V. P. Burmaka, V. N. Lysenko, L. F. Chernogor, and Yu. V. Chernyak, “Wave-Like Processes in the Iono-spheric F Region that Accompanied Rocket Launches from the Baikonur Site,” Geomagn. Aeron. 46(6), 742–759 (2006c) [Geomagn. Aeron. 46, 742–759 (2006c)].CrossRefGoogle Scholar
  10. 10.
    L. F. Chernogor, “Physics of the Earth, Atmosphere, and Geocosmos in the Light of the System Paradigm,” Radiofiz. Radioastron. 8(1), 59–106 (2003b).Google Scholar
  11. 11.
    L. F. Chernogor, “Hurricane as an Element of the Earth-Atmosphere-Ionosphere-Magnetosphere System,” Kosm. Nauka Tekhnol., No. 2/3, 16–36 (2006a).Google Scholar
  12. 12.
    L. F. Chernogor, “The Earth-Atmosphere-Ionosphere-Magnetosphere as an Open Dynamic Nonlinear Physical System. 1,” Nelineinyi Mir 4(12), 655–697 (2006b).Google Scholar
  13. 13.
    L. F. Chernogor, “The Earth-Atmosphere-Ionosphere-Magnetosphere as an Open Dynamic Nonlinear Physical System. 2,” Nelineinyi Mir 5(4), 198–231 (2007).Google Scholar
  14. 14.
    L. F. Chernogor, “The Earth, Atmosphere, and Geocosmos as an Open Dynamic Nonlinear System,” Kosm. Nauka Tekhnol. 9(5/6), 96–105 (2003a).Google Scholar
  15. 15.
    V. P. D’yakonov, Wavelets. From Theory to Practice (Solon-R, Moscow, 2002) [in Russian].Google Scholar
  16. 16.
    K. P. Garmash, V. T. Rozumenko, O. F. Tyrnov, et al., “Radar Studying Processes in the Near-Earth Plasma Disturbed by High-Energy Sources,” Zarubezh. Radioelektron. Usp. Sovrem. Radioelektron., No. 7, 3–15 (1999).Google Scholar
  17. 17.
    E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).Google Scholar
  18. 18.
    G. I. Grigor’ev, “Acoustic Gravity Waves in the Earth’s Atmosphere: A Review,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42(1), 3–25 (1999).Google Scholar
  19. 19.
    E. I. Grigorenko, S. V. Lazorenko, V. I. Taran, and L. F. Chernogor, “Wave Disturbances in the Iono-sphere Accompanied the Solar Flare and the Strongest Magnetic Storm of September 25, 1998,” Geomagn. Aeron. 43(6), 770–787 (2003) [Geomagn. Aeron. 43, 718–735 (2003)].Google Scholar
  20. 20.
    K. Hocke and K. Schlegel, “A Review of Atmospheric Gravity Waves and Traveling Ionospheric Disturbances: 1982–1995,” Ann. Geophys. 14, 917–940 (1996).Google Scholar
  21. 21.
    M. Holschneider, Wavelets: An Analysis Tool (Calderon Press, Oxford, 1995).Google Scholar
  22. 22.
    L. S. Kostrov, V. T. Rozumenko, and L. F. Chernogor, “Doppler Radiosounding of Disturbances in the Naturally Disturbed Middle Ionosphere,” Radiofiz. Radioastron. 4(3), 206–226 (1999a).Google Scholar
  23. 23.
    L. S. Kostrov, V. T. Rozumenko, and L. F. Chernogor, “Doppler Radiosounding of Disturbances in the Middle Ionosphere, Accompanying Spacecraft Launches and Flights,” Radiofiz. Radioastron. 4(3), 227–246 (1999b).Google Scholar
  24. 24.
    V. F. Kravchenko, O. V. Lazorenko, V. I. Pustovoit, and L. F. Chernogor, “Choi-Williams Transformation and Atomic Functions in a Digital Signal Processing,” Dokl. Akad. Nauk 413(6), 750–753 (2007).Google Scholar
  25. 25.
    V. F. Kravchenko, O. V. Lazorenko, V. I. Pustovoit, and L. F. Chernogor, “Wigner Transformation in a Digital Signal Processing,” Dokl. Akad. Nauk 410(1), 38–41 (2006).Google Scholar
  26. 26.
    R. M. Kronover, Fractals and Chaos in Dynamic Systems. A Theory (Postmarket, Moscow, 2000) [in Russian].Google Scholar
  27. 27.
    O. V. Lazorenko and L. F. Chernogor, “System Spectral Analysis of Signals: A Theory and Practical Application,” Radiofiz. Radioastron. 12(2), 162–181 (2007).Google Scholar
  28. 28.
    O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Application of a Wavelet Analysis to Detection of Ultra-Broadband Signals against a Background of Noise,” Radiofiz. Radioastron. 7(1), 46–63 (2002).Google Scholar
  29. 29.
    O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Wavelet Analysis of Model Signals with Singularities. 2. Analytical and Discrete Wavelet Transformation,” Radiofiz. Radioastron. 12(3), 278–294 (2007b).Google Scholar
  30. 30.
    O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogor, “Wavelet Analysis of Model Signals with Singularities. 1. Continuous Wavelet Transformation,” Radiofiz. Radioastron. 12(2), 182–204 (2007a).Google Scholar
  31. 31.
    O. V. Lazorenko, S. V. Panasenko, and L. F. Chernogor, “Adaptive Fourier Transform,” Elektromagn. Volny Elektron. Sist. 10(10), 39–49 (2005).Google Scholar
  32. 32.
    S. Malla, Wavelets in Signal Processing (Mir, Moscow, 2005).Google Scholar
  33. 33.
    S. L. Marple, Jr., Digital Spectral Analysis (Englewood Cliffs, New York, 1987; Mir, Moscow, 1990).Google Scholar
  34. 34.
    Meteorological Effects in the Ionosphere, Ed. by A. D. Danilov, E. S. Kazimirovskii, G. V. Vergasova, and G. Ya. Khachikyan (Leningrad, 1987) [in Russian].Google Scholar
  35. 35.
    P. M. Nagorskii, “Rocket-Produced Irregularities in the Ionospheric F-Region,” Geomagn. Aeron. 38(2), 100–106 (1998) [Geomagn. Aeron. 38, (212–216 1998)].Google Scholar
  36. 36.
    S. A. Namazov, “Doppler Frequency Shift during Ionospheric Propagation of Decameter Radiowaves,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 18(4), 473–500 (1975).Google Scholar
  37. 37.
    S. T. Noble, “A Large-Amplitude Travelling Ionospheric Disturbance Excited by the Space Shuttle during Launch,” J. Geophys. Res. 95A, 19 037–19 044 (1990).Google Scholar
  38. 38.
    V. M. Somsikov, “Atmospheric Waves Caused by the Solar Terminator: A Review,” Geomagn. Aeron. 31(1), 1–12 (1991).Google Scholar
  39. 39.
    V. I. Taran, “A Study of the Natural and Artificially Disturbed Ionosphere by the Incoherent Scatter Method,” Geomagn. Aeron. 41(5), 659–666 (2001) [Geomagn. Aeron. 41, 632–639 (2001)].Google Scholar
  40. 40.
    The Transforms and Applications Handbook, Ed. by A. Puolarikas (USA, CRC Press, 1996).Google Scholar
  41. 41.
    O. V. Vishnevetskii, O. V. Lazorenko, and L. F. Chernogor, “Analysis of Nonlinear Wave-Like Processes Using the Wigner Transformation,” Radiofiz. Radioastron. 12(3), 295–310 (2007).Google Scholar
  42. 42.
    O. V. Vishnevetskii, V. F. Kravchenko, O. V. Lazorenko, and L. F. Chernogor, “Wigner Transformation and Atomic Functions in Digital Signal Processing,” Elektromagn. Volny Elektron. Sistemy 11(6), 26–38 (2006).Google Scholar
  43. 43.
    P. J. S. Williams, “Tides, Atmospheric Gravity Waves and Travelling Disturbances in the Ionosphere,” in Modern Ionospheric Science. A Collection of Articles Published on the Occasion of the Anniversary: “50 Years of Ionospheric Research in Lindau,” (1996), pp. 136–180.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Kharkov Karazin National UniversityKharkovUkraine

Personalised recommendations