Advertisement

Geomagnetism and Aeronomy

, Volume 47, Issue 1, pp 109–117 | Cite as

Cosmic ray flux variations, modulated by the solar and terrestrial magnetic fields, and climate changes. Part 2: The time interval from ∼10000 to ∼100000 years ago

  • V. A. Dergachev
  • P. B. Dmitriev
  • O. M. Raspopov
  • H. Jungner
Article

Abstract

A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ∼10000 to ∼100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.

PACS numbers

96.50.Sb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Bradley, “Paleoclimatology, Reconstructing Climates of the Quaternary,” Int. Geophys. Ser. 64 (1999).Google Scholar
  2. 2.
    A. Cox, “Geomagnetic Reversals,” Science 63, 237–245 (1969).CrossRefGoogle Scholar
  3. 3.
    V. A. Dergachev, P. B. Dmitriev, O. M. Raspopov, and H. Jungner, “Cosmic Ray Flux Variations, Modulated by the Solar and Earth’s Magnetic Fields, and Climate Changes. 1. Time Interval from the Present to 10–12 ka Ago (the Holocene Epoch),” Geomagn. Aeron. 46(1), 123–134 (2006) [Geomagn. Aeron. 46, 118–128 (2006)].CrossRefGoogle Scholar
  4. 4.
    R. C. Finkel and K. Nishiizumi, “Beryllium 10 Concentrations in the Greenland Ice Sheet Project 2 Ice Core from 3–40 ka,” J. Geophys. Res. 102C, 26699–26706 (1997).CrossRefGoogle Scholar
  5. 5.
    P. M. Grootes and M. Stuiver, “Oxygen 18/16 Variability in Greenland Snow and Ice with 10−3 to 105-Year Time Resolution,” J. Geophys. Res. 102, 26455–26470 (1997).CrossRefGoogle Scholar
  6. 6.
    Y. Guyodo and J.-P. Valet, “Relative Variations in Geomagnetic Intensity from Sedimentary Records: the Past 200.000 Years,” Earth Planet. Sci. Lett. 143, 23–36 (1996).CrossRefGoogle Scholar
  7. 7.
    D. V. Hoyt and K. Y. Schatten, The Role of the Sun in Climate Change (Oxford Univ. Press, Oxford, 1997).Google Scholar
  8. 8.
    C. Laj, C. Kissel, A. Mazaud, et al., “Geomagnetic Field Intensity, North Atlantic Deep Water Circulation and Atmospheric 14C during the Last 50 kyr,” Earth Planet. Sci. Lett. 200, 177–190 (2002).CrossRefGoogle Scholar
  9. 9.
    C. Laj, C. Kissel, A. Mazaud, et al., “North Atlantic Paleointensity Stack since 75 ka (NAPIS-75) and the Duration of the Laschamp Event,” Phil. Trans. R. Soc. (London) 358, 1009–1025 (2000).CrossRefGoogle Scholar
  10. 10.
    B. Lehman, C. Laj, C. Kissel, et al., “Relative Changes of the Geomagnetic Field Intensity during the Last 280 kyr from Piston Cores in the Azores Area,” Phys. Earth Planet. Sci. 93, 269–284 (1996).CrossRefGoogle Scholar
  11. 11.
    J. Masarik and J. Beer, “Simulation of Particle Fluxes and Cosmogenic Nuclide Production in the Earth’s Atmosphere,” J. Geophys. Res. 104D, 12099–12111 (1999).CrossRefGoogle Scholar
  12. 12.
    A. S. Monin and Yu. A. Shishkov, “Climate as a Problem of Physics,” Usp. Fiz. Nauk 170, 419–445 (2000).CrossRefGoogle Scholar
  13. 13.
    G. N. Petrova, T. B. Nechaeva, and G. A. Pospelova, Characteristic Changes in the Geomagnetic Field in the Past (Nauka, Moscow, 1992) [in Russian].Google Scholar
  14. 14.
    L. Sagnotti, P. Macri, A. Camerlenghi, and M. Rebesco, “Environmental Magnetism of Antarctic Late Pleistocene Sediments and Interhemispheric Correlation of Climatic Events,” Earth Planet. Sci. Lett. 192, 65–80 (2001).CrossRefGoogle Scholar
  15. 15.
    R. Souchez, “The Buildup of the Ice Sheet in Central Greenland,” J. Geophys. Res. 102, 26317–26323 (1997).CrossRefGoogle Scholar
  16. 16.
    E. J. Steig, D. L. Morse, E. D. Waddington, et al., “Wisconsinan and Holocene Climate History from an Ice Core at Taylor Dome, Western Ross Embayment, Antarctica,” Geograf. Ann. 82A(2–3), 213–235 (2000).Google Scholar
  17. 17.
    J. S. Stoner, C. Laj, J. E. T. Channell, and C. Kissel, “South Atlantic and North Atlantic Geomagnetic Paleointensity Stacks (0–80 ka): Implications for Inter-Hemispheric Correlation,” Quat. Sci. Rev. 21, 1141–1151 (2002).CrossRefGoogle Scholar
  18. 18.
    M. Stuiver, P. J. Reimer, E. Bard, et al., INTCAL98 “Radiocarbon Age Calibration, 24000 cal BP,” Radiocarbon 40(3), 1041–1083 (1998).Google Scholar
  19. 19.
    B. Van Geel, O. M. Raspopov, H. Renssen, et al., “The Role of Solar Forcing upon Climate Change,” Quart. Sci. Rev. 18, 331–338 (1999).CrossRefGoogle Scholar
  20. 20.
    A. H. L. Voelker, P. M. Grootes, M.-J. Nadeau, and M. Sarnthein, “Radiocarbon Levels in the Iceland Sea from 25–53 kyr and Their Link to the Earth’s Magnetic Field Intensity,” Radiocarbon 42, 437–452 (2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. A. Dergachev
    • 1
  • P. B. Dmitriev
    • 1
  • O. M. Raspopov
    • 2
  • H. Jungner
    • 3
  1. 1.Ioffe Physico-technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussia
  3. 3.University of HelsinkiFinland

Personalised recommendations