Geomagnetism and Aeronomy

, Volume 46, Issue 3, pp 317–321 | Cite as

Medium-scale splitting of outflowing field-aligned currents and kappa distribution of magnetospheric ions

  • N. O. Ermakova
  • E. E. Antonova
  • M. V. Stepanova


The medium-scale (50–200 km in the projection onto ionospheric altitudes) splitting of the field-aligned currents flowing out of the ionosphere has been considered in the case when the approximation of the distribution function of hot magnetospheric ions by the kappa distribution is taken into account. It was assumed that the condition of magnetostatic equilibrium and isotropy of hot magnetospheric plasma pressure is satisfied in the magnetosphere. The theoretical parameter of magnetospheric plasma hot stratification has been obtained for the case of ion kappa distribution. The parameter characterizes the number of structures into which the band of the field-aligned current flowing out of the ionosphere is split. The theoretical predictions have been compared with the observations on the Intercosmos-Bulgaria-1300 and Aureol-3 satellites. It has been indicated that the number of measured structures is in better agreement with that of the theoretically predicted structures in 70% of cases if the non-Maxwellian tails of ion distribution functions are taken into account.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. E. Antonova and B. A. Tverskoy, “On the Nature of Electric Fields in the Inner Earth’s Magnetosphere (Review),” Geomagn. Aeron. 36(2), 1–18 (1996) [Geomagn. Aeron. 36, 145–158 (1996)].Google Scholar
  2. 2.
    E. E. Antonova, M. V. Stepanova, E. A. Vikhreva, et al., “Generation of Unmagnetized Motion of Plasma Sheet Electrons and Its Possible Causes,” J. Geophys. Res. 104A, 19 941–19 953 (1999).Google Scholar
  3. 3.
    E. E. Antonova, M. V. Stepanova, M. V. Teltsov, and B. A. Tverskoy, “Multiple Inverted-V Structures and Hot Plasma Pressure Gradient Mechanism of Plasma Stratification,” J. Geophys. Res. 103A, 9317–9332 (1998).CrossRefGoogle Scholar
  4. 4.
    E. E. Antonova, M. V. Stepanova, and B. A. Tverskoy, “Effect of Self-Consistent Ionospheric Conductivity on Splitting of Field-Aligned Currents,” Geomagn. Aeron. 25(1), 16–21 (1988).Google Scholar
  5. 5.
    E. E. Antonova, N. O. Ermakova, M. V. Stepanova, and M. V. Teltsov, “The Influence of the Energetic Tails of Ion Distribution Function on the Main Parameter of the Theory of Field-Aligned Current Splitting and “Intercosmos-Bulgaria-1300” Observations,” Adv. Space Res. 31(5), 1229–1234 (2003).CrossRefGoogle Scholar
  6. 6.
    E. E. Antonova, V. I. Lazarev, M. V. Stepanova, et al., “Parameters of Multiplet Structures of an Inverted V-Type According to the “Interkosmos-Bolgariya-1300” Data,” Geomagn. Aeron. 31(2), 258–267 (1991).Google Scholar
  7. 7.
    J. Büchner and L. M. Zelenyi, “Regular and Chaotic Charged Particle Motion in Magnetotaillike Field Reversals. 1. Basic Theory of Trapped Motion,” J. Geophys. Res. 94A, 11821–11842 (1989).Google Scholar
  8. 8.
    S. P. Christon, D. G. Mitchell, D. J. Williams, et al., “Energy Spectra of Plasma Sheet Ions and Electrons from ∼50 eV/e to ∼1 MeV during Plasma Sheet Temperature Transitions,” J. Geophys. Res. 93(4), 2562–2572 (1988).Google Scholar
  9. 9.
    S. P. Christon, D. J. Williams, D. G. Mitchell, et al., “Spectral Characteristics of Plasma Sheet Ion and Electron Population during Undisturbed Geomagnetic Conditions,” J. Geophys. Res. 94(10), 13409–13424 (1989).Google Scholar
  10. 10.
    M. R. Collier, “Evolution of Kappa Distribution under Velocity Space Diffusion: A Model for the Observed Relationship between Their Spectral Parameters,” J. Geophys. Res. 104A, 28559–28564 (1999).CrossRefGoogle Scholar
  11. 11.
    L. A. Frank and K. L. Ackerson, “Observations of Charged Particle Precipitation into the Auroral Zone,” J. Geophys. Res. 76(16), 3612–3643 (1971).CrossRefGoogle Scholar
  12. 12.
    O. Luizar, M. V. Stepanova, J. M. Bosqued, et al., “Experimental Study of the Formation of Inverted-V Structures and Their Stratification Using AUREOL-3 Observations,” Ann. Geophys. 18(11), 1399–1411 (2000).Google Scholar
  13. 13.
    P. T. Newell, “Reconsidering the Inverted-V Particle Signature: Relative Frequency of Large-Scale Electron Acceleration Events,” J. Geophys. Res. 105A, 15779–15794 (2000).CrossRefGoogle Scholar
  14. 14.
    N. F. Pisarenko, I. P. Kirpichev, V. N. Lutsenko, et al., “Ion Spectra Structure in the Outer Regions of the Ring Current: Event of November 13, 1995,” Kosm. Issled. 40(1), 17–27 (2002).Google Scholar
  15. 15.
    E. T. Sarris, S. M. Krimigis, A. T. Y. Lui, et al., “Relationship between Energetic Particles and Plasmas in the Distant Plasma Sheet,” Geophys. Res. Lett. 8(3), 349–352 (1981).Google Scholar
  16. 16.
    B. A. Tverskoy, “On the Nature of Homogeneous Auroral Arcs,” Geomagn. Aeron. 22(6), 966–973 (1982b).Google Scholar
  17. 17.
    B. A. Tverskoy, “On Field-Aligned Currents in the Magnetosphere,” Geomagn. Aeron. 22(6), 991–995 (1982a).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • N. O. Ermakova
    • 1
  • E. E. Antonova
    • 1
    • 2
  • M. V. Stepanova
    • 1
    • 3
  1. 1.Skobeltsyn Research Institute of Nuclear PhysicsMoscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.University of Santiago de ChileSantiagoChile

Personalised recommendations