Advertisement

Geomagnetism and Aeronomy

, Volume 46, Issue 1, pp 118–128 | Cite as

Cosmic ray flux variations, modulated by the solar and earth’s magnetic fields, and climate changes. 1. Time interval from the present to 10–12 ka ago (the Holocene Epoch)

  • V. A. Dergachev
  • P. B. Dmitriev
  • O. M. Raspopov
  • H. Jungner
Article

Abstract

Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.

PACS numbers

91.25.Ng 91.25.Dx 92.60.Ry 92.60.Iy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Alavi and G. M. Jenkins, “An Example of Digital Filtering,” Appl. Stat. 14, 70–74 (1965).Google Scholar
  2. 2.
    E. Bard, G. M. Raisbeck, F. Yiou, and J. Jouzel, “Solar Modulation of Cosmogenic Nuclide Production over the Last Millennium: Comparison between 14C and 10Be Records,” Earth Planet. Sci. Lett. 150, 453–462 (1997).CrossRefGoogle Scholar
  3. 3.
    G. A. Bazilevskaya and A. K. Svirzhevskaya, “On the Stratospheric Measurements of Cosmic Rays,” Space Sci. Rev. 85, 431–521 (1998).CrossRefGoogle Scholar
  4. 4.
    J. Beer, S. Baumgartner, B. Hannen-Dittrich, et al., “Solar Variability Traced by Cosmogenic Isotopes,” in The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Ed. by J. M. Pap, C. Frohlich, H. S. Hudson, and S. K. P. Solanki (University Press, Cambridge, 1994), pp. 291–300.Google Scholar
  5. 5.
    G. Castagnoli and D. Lal, “Solar Modulation Effects in Terrestrial Production of Carbon-14,” Radiocarbon 22, 133–158 (1980).Google Scholar
  6. 6.
    V. A. Dergachev and P. B. Dmitriev, “Medium-Term (Hundreds of Years) Periodic Fluctuations of Radiocarbon Content on a Large Timescale,” Biofizika 43(5), 857–862 (1998).Google Scholar
  7. 7.
    V. A. Dergachev and V. F. Chistyakov, “Cosmogenic Radiocarbon and Cyclical Natural Processes,” Radiocarbon 37, 417–424 (1995).Google Scholar
  8. 8.
    V. A. Dergachev, “Concentration of Cosmogenic Radiocarbon in the Earth’s Atmosphere and Solar Activity during the Last Millennia,” Geomagn. Aeron. 35(2), 49–60 (1996) [Geomagn. Aeron. 35, 179–186 (1996)].Google Scholar
  9. 9.
    G. Jenkins and D. Watts, Spectral Analysis and Its Applications (Golden-Day, San Francisco, 1966; Mir, Moscow, 1972).Google Scholar
  10. 10.
    R. C. Finkel and K. Nishisumi, “Beryllium 10 Concentrations in the Greenland Ice Sheet Project 2 Ice Core from 3–40 ka,” J. Geophys. Res. 102C, 26 699–26 706 (1997).Google Scholar
  11. 11.
    D. Fleitmann, S. Burns, M. Mudelsee, et al., “Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman,” Science 300, 1737–1739 (2003).CrossRefGoogle Scholar
  12. 12.
    P. M. Grootes and M. Stuiver, “Oxygen 18/16 Variability in Greenland Snow and Ice with 10−3 to 105-Year Time Resolution,” J. Geophys. Res. 102, 26455–26470 (1997).CrossRefGoogle Scholar
  13. 13.
    A. Indermuhle, T. F. Stocke, F. Joo, et al., “Holocene Carbon-Cycle Dynamics Based on CO2 Trapped in Ice at Taylor Dome, Antarctica,” Nature 398, 121–126 (1999).Google Scholar
  14. 14.
    M. I. Pudovkin and O. M. Raspopov, “Mechanism of the Effect of Solar Activity on the State of the Lower Atmosphere and Meteorological Parameters,” Geomagn. Aeron. 32(5), 1–22 (1992).Google Scholar
  15. 15.
    O. M. Raspopov, V. A. Dergachev, O. I. Shumilov, et al., “Impact of Ray Flux Variations Caused by Changes in the Geomagnetic Dipole Moment on Climate Variability,” Geomagn. Aeron. 40(1), 97–108 (2000) [Geomagn. Aeron. 40, 90–100 (2000)].Google Scholar
  16. 16.
    M. Stuiver and B. Becker, “High Precision Decadal Calibration of the Radiocarbon Time Scale AD 1950–6000 BC,” Radiocarbon 35(1), 35–65 (1993).Google Scholar
  17. 17.
    M. Stuiver and T. F. Braziunas, “Sun, Ocean, Climate and Atmospheric 14CO2, An Evaluation of Causal and Spectral Relationships,” The Holocene 3, 289–305 (1993).Google Scholar
  18. 18.
    M. Stuiver, R. J. Raimer, and T. F. Braziunas, “High-Precision Radiocarbon Age Calibration for Terrestrial and Marine Samples,” Radiocarbon 40(3), 1127–1151 (1998).Google Scholar
  19. 19.
    H. Svensmark and E. Friis-Cristensen, “Variation of Cosmic Ray Flux and Global Cloud Coverage: A Missing Link in Solar-Climate Relationship,” J. Atmos. Sol.-Terr. Phys. 59, 1225–1234 (1997).CrossRefGoogle Scholar
  20. 20.
    N. Teanby and D. Gubbins, “The Effects of Aliasing and Lock-in Processes on Paleosecular Variation Records from Sediments,” Geophys. J. Int. 142, 563–570 (2000).CrossRefGoogle Scholar
  21. 21.
    L. G. Thompson, E. Mosley-Thompson, M. E. Davis, et al., “Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa,” Science 298, 589–593 (2002).CrossRefGoogle Scholar
  22. 22.
    S. S. Vasiliev, V. A. Dergachev, and O. M. Raspopov, “Manifestation of the Long-Term Variations in Solar Activity and Their Relation to the ∼210-Year Solar Cycle,” Geomagn. Aeron. 42(3), 147–154 (2002) [Geomagn. Aeron. 42, 137–144 (2002)].Google Scholar
  23. 23.
    D. Verschuren, K. Laird, and B. Cumming, “Rainfall and Drought in Equatorial East Africa during the Past 1100 Years,” Nature 403, 410–413 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Dergachev
    • 1
  • P. B. Dmitriev
    • 1
  • O. M. Raspopov
    • 2
  • H. Jungner
    • 3
  1. 1.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, St. Petersburg BranchRussian Academy of SciencesSt. PetersburgRussia
  3. 3.University of HelsinkiHelsinkiFinland

Personalised recommendations