Skip to main content
Log in

Theoretical Analysis of Mg and Si Chemical and Isotopic Fractionation at Vaporization of Ca–Al Inclusions of Chondrites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Experimental study of changes in the composition of Ca–Al inclusions of chondrites during evaporation indicates the chemical and isotopic fractionation of this material are closely interrelated. The coupling is theoretically described using an equations for the evaporation rate of a component of melt (the Hertz–Knudsen equation) and Rayleigh isotope fractionation. The form of the Rayleigh equation (which was derived from the Hertz–Knudsen equation) conventionally used in the foreign literature faces difficulties in interpreting experimental data. The discrepancy between the experimental and model data is explained by the fact that the “ideal” isotope fractionation factor used in the Rayleigh equation does not take into account its dependence on the temperature and composition of the evaporating melt. The paper presents an alternative expression for the Rayleigh equation and a new expression of the Hertz–Knudsen evaporation rate with regard for the activity of melt components. The activity of the components is determined by the acidity–basicity index of the melt Ca–Al inclusion, which, in turn, affects the evaporative fractionation of Mg and Si isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. C. M. O’D. Alexander, “Exploration of quantitative kinetic models for the evaporation of silicate melts in vacuum and in hydrogen,” Meteorit. Planet. Sci. 36, 255–283 (2001).

  2. ASP Conference Series 341, (2005).

  3. A. I. Brodsky, Isotope Chemistry (Akad. Nauk SSSR, Moscow, 1952) [in Russian].

    Google Scholar 

  4. Chondrites and the Protoplanetary Disk, Ed. by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conf. Ser. 341, (2005).

    Google Scholar 

  5. Chondrules and Protoplanetary Disk, Ed. by R. H. Hewins, R. H. Jones, and E. R. D. Scott (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  6. N. Dauphas, A. M. Davis, R. Mendybaev, F. M. Richter, M. Wadhwa, P. E. Janney, and N. Foley, “Iron isotopic fractionation during vacuum evaporation of molten wustite and solar compositions,” Lunar Planet. Sci. Conf. 35, # 1585.pdf (2004).

  7. A. M. Davis, A. Hashimoto, R. N. Clayton, and T. K. Mayeda, “Isotope mass fractionation during evaporation of Mg2SiO4,” Nature 347, 655–658 (1990).

    Article  Google Scholar 

  8. A. M. Davis, C.M.O’D Alexander, H. Nagahara, and F. M. Richter, “Evaporation and condensation during CAI and chondrule formation,” Chondrule and Planetary Disk, Ed. by A. N. Krot, E. R. D. Scott, and B. Reipurt, APS Conference Series 341, 432-455 (2005).

  9. E. M. Galimov, Phenomenon of Life: between Equilibrium and Non-Linearity. Origin and Principles of Evolution (Editorial URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  10. J. Ganguly and S. K. Saxena, Mixture and Mineral Reaction (Springer-Verlag, Berlin, 1987).

    Book  Google Scholar 

  11. L. Grossman, D. S. Ebel, S. B. Simon, A. M. Davis, F. M. Richter, and N. M. Parsad, “Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the separate roles of condensation and evaporation,” Geochim. Cosmochim. Acta 64 (16), 2879–2894 (2000).

    Article  Google Scholar 

  12. L. Grossman, S. B. Simon, V. K. Rai, M. H. Thiemens, I. D. Hutcheon, R. W. Williams, A. Galy, T. Ding, A. V. Fedkin, R. N. Clayton, and T.K. Mayeda, “Primordial compositions of refractory inclusions,” Geochim. Cosmochim. Acta 72, 3001–3021 (2008).

    Article  Google Scholar 

  13. M. A. Ivanova, “Ca–Al-rich inclusions in carbonaceous chondrites: the oldest solar system objects,” Geochem. Int. 54 (5) 387–402 (2016).

    Article  Google Scholar 

  14. P. E. Janney, R. A. Mendybaev, N. Dauphas, A. M. Davis, F. M. Richter, and M. Wadhwa, “″Nonideal″ isotopic fractionation behavior of magnesium evaporation residues,” Lunar Planet. Sci. 35, # 2092 (2004).

  15. E. K. Kazenas, and D. M. Chizhikov, Pressure and Compositio of Vapor above Oxides of Chemical Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. E. K. Kazenas, and Yu. V. Tsvetkov, Thermodynamics of Oxide Vaporization (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  17. K. B. Knight, N. T. Kita, R. A Mendybaev, F. M. Richter, A. M. Davis, and J. W. Valley, “Silicon isotopic fractionation of CAI-like vacuum evaporation residues,” Geochim. Cosmochim. Acta (73), 6390–6401 (2009).

  18. D. S. Korzhinskii, “Acid–base interaction of components in silicate melts and direction of cotectic lines,” Dokl. Akad. Nauk SSSR 128 (2), 383–386 (1959).

    Google Scholar 

  19. G. J. MacPherson, “Calcium–aluminum-rich inclusions in chondritic meteorites,” Meteorit. Cosmochem. Process 2, 139–179 (2014).

    Google Scholar 

  20. O. M. Markova, O. I. Yakovlev, G. A. Semenov, and A. N. Belov, “Some general resulys of experiments on vaporization of natural melts in Knudsen cell,” Geokhimiya, No. 11, 1559–1569 (1986).

    Google Scholar 

  21. K. D. McKeegan and A. N. Davis, “Early Solar system chronology,” Treatise on geochemistry: Meteorites, Comets, and Planets, Ed. by A. M. Davis (Elsevier, 2003), pp. 431-460.

    Google Scholar 

  22. R. A. Mendybaev, “Chemical and isotopic fractionations during evaporation of CAI-like melts,” 81st Annual Meeting of The Meteoritical Society, Moscow (Moscow, LPI Contrib, 2018), No. 2067, #6313 (2018).

  23. R. A. Mendybaev, F. M. Richter, R. B. Georg, P. E. Janney, M. J. Spicuzza, A. M. Davis, and J. W. Valley, “Experimental evaporation of Mg- and Si-rich melts: Implications for the origin and evolution of FUN CAIs,” Geochim. Cosmochim. Acta 123, 368–384 (2013).

    Article  Google Scholar 

  24. R. A. Mendybaev, C. D. Williams, M. J. Spicuzza, F. M. Richter, J. W. Valley, A. V. Fedkin, and M. Wadhwa, “Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II – Laboratory evaporation of potential CMS-1 precursor material,” Geochim. Cosmochim. Acta 201, 49–64 (2017).

    Article  Google Scholar 

  25. C. Park, K. Nagashima, A. N. Krot, G. R. Huss, A. M. Davis, and M. Bizzarro, “Calcium–aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium-isotope measurements,” Geochim. Cosmochim. Acta 201, 6–24 (2017).

    Article  Google Scholar 

  26. F. M. Richter, “Timescales determining the degree of kinetic isotope fractionation by evaporation and condensation,” Geochim. Cosmochim. Acta 68 (23), 4971–4992 (2004).

    Article  Google Scholar 

  27. F. M. Richter, A. M. Davis, D. S. Ebel, and A. Hashimoto, “Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution,” Geochim. Cosmochim. Acta 66 (3), 521–540 (2002).

    Article  Google Scholar 

  28. F. M. Richter, P. E. Janney, R. A. Mendybaev, A. M. Davis, and M. Wadhwa, “Elemental and isotopic fractionation of type B CAI-like liquids by evaporation,” Geochim. Cosmochim. Acta 71, 5544–5564 (2007).

    Article  Google Scholar 

  29. F. M. Richter, R. A. Mendybaev, J. N. Christensen, D. S. Ebel, and A. Gaffney, “Laboratory experiments bearing on the origin and evolution of olivine-rich chondrules,” Meteorit. & Planet. Sci. 46 (8), 1152–1178 (2011).

    Article  Google Scholar 

  30. S. I. Shornikov, “Vaporization coefficients of oxides contained in the melts of Ca–Al–Inclusions,” Geochem. Int. 53 (12) 1080–1089 (2015).

    Article  Google Scholar 

  31. Treatise on Geochemistry: Meteorites, Comets, and Planets, Ed by A. M. Davis (Elsevier, 2003).

    Google Scholar 

  32. A. Tsuchiyama, S. Tachibana, and T. Takahashi, “Evaporation of forsterite in the primordial solar nebula; rates and accompanied isotopic fractionation,” Geochim. Cosmochim. Acta 63 (16), 2451–2466 (1999).

    Article  Google Scholar 

  33. T. Ushikubo, T. J. Tenner, H. Hiyagon, and N. T. Kita, “A long duration of the 16O-rich reservoir in the solar nebula, as recorded in fine-grained refractory inclusions from the least metamorphosed carbonaceous chondrites,” Geochim. Cosmochim. Acta 201, 103–122 (2017).

    Article  Google Scholar 

  34. J. A. Wang, M. Davis, R. N. Clayton, T. K. Mayeda, and A. Hashimoto, “Chemical and isotopic fractionation during the evaporation of the FeO–MgO–SiO2–CaO–Al2O3–TiO2 rare earth element melt system,” Geochim. Cosmochim. Acta 65 (3), 479–494 (2001).

    Article  Google Scholar 

  35. C. D. Williams, T. Ushikubo, E. S. Bullock, P. E. Janney, R. R. Hines, N. T. Kita, R. L. Hervig, G. J. MacPherson, R. A. Mendybaev, F. M. Richter, and M. Wadhwa, “Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I—Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1,” Geochim. Cosmochim. Acta 201, 25–48 (2017).

    Article  Google Scholar 

  36. B. J. Wood, and D. G. Fraser, Elementary Thermodynamics for Geologists (Oxford University Press, 1976).

    Google Scholar 

  37. O. I. Yakovlev and A. I. Kosolapov, “Vacuum vaporization of melts,” Planetology. Reports of Soviet Geologists on 25 th Session of the International Geological Congress, (Nauka, Moscow, 1976), pp. 253–270 [in Russian].

  38. O. I. Yakovlev, A. I. Kosolapov, A. V. Kuznetsov, and M. D. Nusinov, “Results of vacuum fractional vaporization of basalic melt,” Dokl. Akad. Nauk SSSR 206 (4), 970–973 (1972).

    Google Scholar 

  39. O. I. Yakovlev, A. I. Kosolapov, A. V. Kuznetsov, and M. D. Nusinov, “Specifics of Vacuum Vaporization of K and Na from melts,” Vestn. Mosk. Univ., Ser. Geol., No. 5, 85–88 (1973).

  40. O. I. Yakovlev, O. M. Markova, G. A. Semenov, and A. N. Belov, “Results of experiment on the Krymka chondrite vaporization,” Meteoritika 43, 125–133 (1984).

    Google Scholar 

  41. O. I. Yakovlev, O. M. Markova, A. N. Belov, and G. A. Semenov, “Formation of metallic iron form during chondrite heating,” Meteoritika 46, 104–118 (1987).

    Google Scholar 

  42. O. I. Yakovlev, K. M. Ryazantsev, and S. I. Shornikov, “The role of acidity–basicity in evaporating refractory inclusions in chondrites,” Geochem. Int. 55 (3) 251–256 (2017).

    Article  Google Scholar 

  43. Y. Yu, R. H. Hewins, C. M. O’D. Alexander, and J. Wang, “Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts,” Geochim. Cosmochim. Acta 67 (4), 773–786 (2003).

    Article  Google Scholar 

  44. V. A. Zharikov, Principles of Physical Geochemistry (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Yakovlev or S. I. Shornikov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, O.I., Shornikov, S.I. Theoretical Analysis of Mg and Si Chemical and Isotopic Fractionation at Vaporization of Ca–Al Inclusions of Chondrites. Geochem. Int. 57, 851–864 (2019). https://doi.org/10.1134/S0016702919080123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919080123

Keywords:

Navigation