Geochemistry International

, Volume 57, Issue 8, pp 912–922 | Cite as

Raman Spectroscopy of High-Pressure Phases in Shocked L6 Chondrite NWA 5011

  • K. D. LitasovEmail author
  • D.D. BadyukovEmail author

Abstract—The paper presents the results of studies of thick shock melt veins in the L6 chondrite NWA 5011. The veins contain a wide variety of high-pressure phases that correspond to contrast values of pressure–temperature parameters on equilibrium phase diagrams. Olivine was transformed to ringwoodite and wadsleyite, orthopyroxene to majorite, akimotoite, and bridgmanite glass, maskelynite is converted to jadeite (+SiO2) and lingunite, apatite to tuite, and chromite to the phase with the calcium ferrite (mCF-FeCr2O4) structure. The peak PT shock parameters for NWA 5011 seem to be the highest among the ones for other shocked chondrites according to the wide occurrence of lingunite and bridgmanite glass and are considerably higher than 25 GPa and 2500 K. Akimotoite crystals in a quenched matrix of the shock melt veins were found for the first time. Probably, they initially crystallized as bridgmanite, since akimotoite is not a liquidus phase in the related systems. Plagioclase–chromite aggregates have been established, which characterize the late stages of the shock process and are formed during successive crystallization from isolated pockets of the impact melt.


meteorite chondrite ringwoodite majorite akimotoite bridgmanite shock metamorphism 



This work was supported by the Russian Foundation for Basic Research (project no. 17-05-00851). D. D. Badyukov was partially supported by the Presidium of the Russian Academy of Sciences (program no. 28).


  1. 1.
    M. Akaogi, E. Ito, and A. Navrotsky, “Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application,” J. Geophys. Res. 94 (B11), 15671–15685 (1989).CrossRefGoogle Scholar
  2. 2.
    I. P. Baziotis, Y. Liu, P. S. DeCarli, H. J. Melosh, H. Y. McSween Jr., R. J. Bodnar, and L. A. Taylor, “The Tissint Martian meteorite as evidence for the largest impact excavation,” Nature Comm. 4, 1404 (2013).CrossRefGoogle Scholar
  3. 3.
    P. M. Bell and E. H. Roseboom, Jr., “Melting relationships of jadeite and albite to 45 kilobars with comments on melting diagrams of binary systems at high pressures,” Min. Soc. Am. Spec. Paper 2, 151–169 (1969).Google Scholar
  4. 4.
    L. Bindi, A. Tamarova, A. V. Bobrov, E. A. Sirotkina, O. Tschauner, M. J. Walter, and T. Irifune, “Incorporation of high amounts of Na in ringwoodite: possible implications for transport of alkali into lower mantle,” Am. Mineral. 101 (2), 483–486 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Chen, J. F. Shu, H. K. Mao, X. D. Xie, and R. J. Hemley, “Natural occurrence and synthesis of two new postspinel polymorphs of chromite,” Proc. Nat. Acad. Sci. 100 (25), 14651–14654 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Chen, J. Shu, and H.-K. Mao, “Xieite, a new mineral of high–pressure FeCr2O4 polymorph,” Chinese Sci. Bull. 53 (21), 3341–3345 (2008).Google Scholar
  7. 7.
    L. Feng, M. Miyahara, T. Nagase, E. Ohtani, S. Hu, A. El Goresy, and Y. Lin, “Shock–induced P–T conditions and formation mechanism of akimotoite–pyroxene glass assemblages in the Grove Mountains (GRV) 052082 (L6) meteorite,” Am. Mineral. 102 (6), 1254–1262 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Fritz and A. Greshake, “High–pressure phases in an ultramafic rock from Mars,” Earth Planet. Sci. Lett. 288 (3–4), 619–623 (2009).CrossRefGoogle Scholar
  9. 9.
    T. Gasparik, Phase Diagrams for Geoscientists. An Atlas of the Earth’s Interior (Springer, 2003).CrossRefGoogle Scholar
  10. 10.
    P. Gillet and A. El Goresy, “Shock events in the Solar System: the message from minerals in terrestrial planets and asteroids,” Ann. Rev. Earth Planet. Sci. 41, 257–285 (2013).CrossRefGoogle Scholar
  11. 11.
    C. Herzberg and J. Zhang, “Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone,” J. Geophys. Res.: Solid Earth 101 (B4), 8271–8295 (1996).CrossRefGoogle Scholar
  12. 12.
    D. Holtstam, C. Broman, J. Soderhielm, and A. Zetterqvist, “First discovery of stishovite in an iron meteorite,” Met. Planet. Sci. 38 (11), 1579–1583 (2003).CrossRefGoogle Scholar
  13. 13.
    T. Ishii, H. Kojitani, S. Tsukamoto, K. Fujino, D. Mori, Y. Inaguma, N. Tsujino, T.Yoshino, D. Yamazaki, Y. Higo, K. Funakoshi, and M. Akaogi, “High–pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications,” Am. Mineral. 99 (8–9), 1788–1797 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Konzett, D. Rhede, and D. J. Frost, “The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle,” Contrib. Mineral. Petrol. 163 (2), 277–296 (2012).CrossRefGoogle Scholar
  15. 15.
    K. Litasov, E. Ohtani, F. Langenhorst, H. Yurimoto, T. Kubo, and T. Kondo, “Water solubility in Mg–perovskites and water storage capacity in the lower mantle,” Earth Planet. Sci. Lett. 211 (1–2), 189–203 (2003).CrossRefGoogle Scholar
  16. 16.
    K. D. Litasov and N. M. Podgornykh, “Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite,” J. Raman Spectr. 48 (11), 1518–1527 (2017).CrossRefGoogle Scholar
  17. 17.
    K. D. Litasov, D. D. Badyukov, and N. P. Pokhilenko, “Formation parameters of high-pressure minerals in the Dhofar 717 and 864 chondrite meteorites,” Dokl. Earth Sci. 485 (1), 327–330.Google Scholar
  18. 18.
    X. Liu, “Phase relations in the system KAlSi3O8–NaAlSi3O8 at high pressure–high temperature conditions and their implication for the petrogenesis of lingunite,” Earth Planet. Sci. Lett. 246 (3–4), 317–325 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Miyahara, S. Kaneko, E. Ohtani, T. Sakai, T. Nagase, M. Kayama, H. Nishido, and N. Hirao, “Discovery of seifertite in a shocked lunar meteorite,” Nature Comm. 4, 1737 (2013).CrossRefGoogle Scholar
  20. 20.
    J. K. Murayama, S. Nakai, M. Kato, and M. Kumazawa, “A dense polymorph of Ca3(PO4)2 – a high–pressure phase of apatite decomposition and its geochemical significance,” Phys. Earth Planet. Inter. 44 (4), 293–303 (1986).CrossRefGoogle Scholar
  21. 21.
    S. Nagy, S. Józsa, I. Gyollai, S. Bérczi, Z.Bendő, and H. Stehlik, “Ringwoodite microstructures in L–chondrite NWA 5011: implications for transformation mechanism and source region in L parent body,” Central Eur. Geol. 54 (3), 233–248 (2011).CrossRefGoogle Scholar
  22. 22.
    E. Ohtani, Y. Kimura, M. Kimura, T. Takata, T. Kondo, and T. Kubo, “Formation of high–pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size,” Earth Planet. Sci. Lett. 227(3–4), 505–515 (2004).CrossRefGoogle Scholar
  23. 23.
    E. Ohtani, Y. Kimura, M. Kimura, T. Kubo, and T. Takata, “High–pressure minerals in shocked L6–chondrites: constraints on impact conditions,” Shock Waves 16 (1), 45–52 (2006).CrossRefGoogle Scholar
  24. 24.
    S. S. Rout, P. R. Heck, N. J. Zaluzec, T. Ishii, J. Wen, D. J. Miller, and B. Schmitz, “Shocked chromites in fossil L chondrites: a Raman spectroscopy and transmission electron microscopy study,” Met. Planet. Sci. 52 (9), 1776–1796 (2017.CrossRefGoogle Scholar
  25. 25.
    A. E. Rubin, “Chromite–plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites,” Geochim. Cosmochim. Acta 67 (14), 2695–2709 (2003).CrossRefGoogle Scholar
  26. 26.
    T. G. Sharp and P. S. DeCarli, “Shock effects in meteorites,” Meteorites and the Early Solar System II, Ed. by D. S. Lauretta and H. Y. McSween, Jr., (University of Arisona Press, Tucson, 2006), pp. 653–677.Google Scholar
  27. 27.
    E. A. Sirotkina, L. Bindi, A. V. Bobrov, A. P. Tamarova, D. Yu. Pushcharovsky, and T. Irifune, “X-ray single–crystal structural characterization of Na2MgSiO4 with cristobalite–type structure synthesized at 22 GPa and 1800°C,” Eur. J. Mineral. 30 (3), 485–489 (2018).CrossRefGoogle Scholar
  28. 28.
    D. Stoffler, K. Keil, and E. R. D. Scott, “Shock metamorphism of ordinary chondrites,” Geochim. Cosmochim. Acta 55(12), 3845–3867 (1991).CrossRefGoogle Scholar
  29. 29.
    N. Tomioka and M. Kimura, “The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite,” Earth Planet. Sci. Lett. 208 (3–4), 271–278 (2003).CrossRefGoogle Scholar
  30. 30.
    N. Tomioka and M. Miyahara, “High-pressure minerals in shocked meteorites,” Met. Planet. Sci. 52 (9), 2017–2039 (2017).CrossRefGoogle Scholar
  31. 31.
    O. Tschauner, C. Ma, J. R. Beckett, C. Prescher, V. B. Prakapenka, and G. R. Rossman, “Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite,” Science 346, 1100–1102 (2014).CrossRefGoogle Scholar
  32. 32.
    X. Xie, M. Chen, and C. Wang, “Occurrence and mineral chemistry of chromite and xieite in the Suizhou L6 chondrite,” Sci. China Earth Sci. 54(7), 998–1010 (2011).CrossRefGoogle Scholar
  33. 33.
    J. Zhang, B. Li, W. Utsumi, and R. C. Liebermann, “In situ X-ray observations of the coesite–stishovite transition: reversed phase boundary and kinetics,” Phys. Chem. Miner. 23 (1), 1–10 (1996).CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, Z. Jin, W. L. Griffin, C. Wang, and Y. Wu, “High–pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites,” Earth Planet. Sci. Lett. 463, 151–158 (2017).CrossRefGoogle Scholar
  35. 35.
    Y. Zhou, T.Irifune, H. Ohfuji, T. Shinmei, and W. Du, “Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K,” Phys. Chem. Miner. 44 (1), 33–42 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations