Advertisement

Geochemistry International

, Volume 56, Issue 13, pp 1289–1321 | Cite as

The Formation of Continental Crust from a Physics Perspective

  • Claude JaupartEmail author
  • Jean-Claude Mareschal
  • Alberto Roman
Article
  • 76 Downloads

Abstract

The generation of crustal material and the formation of continental crust with a thickness of ≈40 km involve different physical mechanisms operating over different time-scales and length-scales. This review focusses on the building of a thick crustal assemblage and on the vertical dimension where the consequences of gravity-driven processes are expressed most clearly. Continental crustal material is produced by a sequence of crust and mantle mlelting, fractionation of basaltic melts and sinking of dense mafic cumulates. The repeated operation of these mechanisms over tens of million years leads to a thick stably stratified crust. We evaluate the main mechanisms involved from a physics perspective and identify the key controls and constraints, with special attention to thermal requirements. To form magma reservoirs able to process significant magma volumes and to allow the foundering of mafic cumulates, melt must be fed locally at rates that are larger than that of average crustal growth. This requires the temporary focussing of magmatic activity in a few centers. In some cases, foundering of dense cumulates does not go to completion, leaving a deformed residual body bearing tell-tale traces of the process. Crust must be thicker than a threshold value in a 30–45 km range for mafic cumulates to sink into the mantle below the crust. Once that threshold thickness has been reached, further additions lead to increase the proportion of felsic material in the crust at the expense of mafic lithologies which disappear from the crust. This acts to enhance radiogenic heat production in the crust. One consequence is that crustal temperatures can be kept at high values in times of diminished melt input and also when magmatic activity stops altogether, which may lead to post-orogenic intracrustal melting and differentiation. Another consequence is that the crust becomes too weak mechanically to withstand the elevation difference with neighbouring terranes, which sets a limit on crustal thickening. The thermal structure of the evolving crust is a key constraint on the overall process and depends strongly on radiogenic heat production, which is surely one of the properties that make continental crust very distinctive. In the Archean Superior Province, Canada, the formation of juvenile continental crust and its thermal maturation 2.7 Gy ago can be tracked quite accurately and reproduced by calculations relying on the wealth of heat flow and heat production data available there. Physical models of magma ascent and storage favour the formation of magma reservoirs at shallow levels. This suggests that crustal growth proceeds mostly from the top down, with material that gets buried to increasingly large depths. Vertical growth is accompanied by lateral spreading in two different places. Within the crust, magma intrusions are bound to extend in the horizontal direction. Deeper down, lateral variations of Moho depth that develop due to the focussing of magmatic activity get relaxed by lower crustal flow. This review has not dealt with processes at the interface between the growing crust and the mantle, which may well be where dikes get initiated by mechanisms that have so far defied theoretical analyses. Research in this particular area is required to further our understanding of continental crust formation.

Keywords:

crustal composition crustal density distribution crustal evolution crustal thermal structure post orogenic magmatism 

Notes

ACKNOWLEDGMENTS

Claude Jaupart is grateful to E. Galimov, S. Shilobreeva, O. Timonina and the members of the Vernadsky Institute for a most fruitful, scientifically productive and enjoyable stay at the Vernadsky Institute, Moscow.

REFERENCES

  1. 1.
    G. A. Abers, “Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematic,” Phys. Earth Plaet. Inter. 149 (1–2), 7–29 (2005).CrossRefGoogle Scholar
  2. 2.
    G. A. Abers, “Hydrated subducted crust at 100–250 km depth,” Earth Planet. Sci. Lett. 176, 323–330 (2000).CrossRefGoogle Scholar
  3. 3.
    J. Adam, S. Turner, T. Rushmer, “The genesis of silicic arc magmas in shallow crustal cold zones,” Lithos 264, 472–494 (2016).CrossRefGoogle Scholar
  4. 4.
    T. J. Ahrens and G. Schubert, “Gabbro–eclogite reaction rate and its geophysical significance,” Rev. Geophys. Sp. Phys. 13 (2), 383–400 (1975).CrossRefGoogle Scholar
  5. 5.
    C. Annen, J. D. Blundy, and R. S. J. Sparks, “The genesis of intermediate and silicic magmas in deep crustal hot zones,” J. Petrol. 47, 505–539 (2006).CrossRefGoogle Scholar
  6. 6.
    R. J. Arculus, O. Ishizuka, K. A. Bogus, M. Gurnis, R. Hickey–Vargas, M. H. Al-Jahdali, A. N. Bandini-Maeder, A. P. Barth, P. A. Brandl, L. Drab, R. Do Monte Guerra, M. Hamada, F. Jiang, K. Kanayama, S. Kender, et al., “A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc,” Nature Geosci. 8, 728–733 (2015).CrossRefGoogle Scholar
  7. 7.
    N. T. Arndt and S. L. Goldstein, “An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling,” Tectonophysics 161, 201–212 (1989).CrossRefGoogle Scholar
  8. 8.
    E. V. Artyushkov, “Stresses in the lithosphere caused by crustal thickness inhomogeneities,” J. Geophys. Res. Solid Earth 78, 7675–7708 (1973).CrossRefGoogle Scholar
  9. 9.
    E. V. Artyushkov, “Can the Earth’s crust be in a state of isostasy? J. Geophys. Res. Solid Earth 79, 741–752 (1974).CrossRefGoogle Scholar
  10. 10.
    P. D. Asimow and M. S. Ghiorso, “Algorithmic modifications extending MELTS to calculate subsolidus phase relations,” Am. Mineral. 83, 1127–1132 (1998).CrossRefGoogle Scholar
  11. 11.
    G. Baer, “Mechanisms of dike propagation in layered rocks and in massive, porous sedimentary rocks,” J. Geophys. Res. Solid Earth 96, 11,911–11,929 (1991).CrossRefGoogle Scholar
  12. 12.
    C. Bassin, G. Laske, and G. Masters, “The current limits of resolution for surface wave tomography in North America,” EOS Trans. Am. Geophys. Union 81, F897 (2000).Google Scholar
  13. 13.
    P. Bird, “Lateral extrusion of lower crust from under high topography in the isostatic limit,” J. Geophys. Res.: Solid Earth 96 (B6), 10275–10286 (1991).CrossRefGoogle Scholar
  14. 14.
    M. Bonafede and E. Rivalta, “On tensile cracks close to and across the interface between two welded elastic half–spaces,” Geophys. J. Int. 138, 410–434 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Bott, “Plate boundary forces at subduction zones and trench–arc compression,” Tectonophysics 170, 1–15 (1989).CrossRefGoogle Scholar
  16. 16.
    W. Brace and D. Kohlstedt, “Limits on lithospheric stress imposed by laboratory experiments,” J. Geophys. Res.: Solid Earth 85 (B11), 6248–6252 (1980a).CrossRefGoogle Scholar
  17. 17.
    W. F. Brace and D. L. Kohlstedt, “Limits on lithospheric stress imposed by laboratory experiments,” J. Geophys. Res. 85, 6248–6252 (1980b).CrossRefGoogle Scholar
  18. 18.
    W. R. Buck, “Modes of continental lithospheric extension,” J. Geophys. Res. Solid Earth 96, 20 (1991).CrossRefGoogle Scholar
  19. 19.
    E. Burov, C. Jaupart, and L. Guillou–Frottier, “Ascent and emplacement of buoyant magma bodies in brittle–ductile upper crust,” J. Geophys. Res.: Solid Earth (1978–2012), 108 (B4) (2003).Google Scholar
  20. 20.
    J. D. Byerlee, “Friction of rocks,” Pure. Appl. Geophys. 116, 615–626 (1978).CrossRefGoogle Scholar
  21. 21.
    I. Campbell, “Some problems with the cumulus theory,” Lithos 11 (4), 311–323 (1978).CrossRefGoogle Scholar
  22. 22.
    K. D. Card, “A review of the Superior Province of the Canadian Shield, a product of Archean accretion,” Precambrian Res. 48, 99–156 (1990).CrossRefGoogle Scholar
  23. 23.
    R. Carlson and G. Raskin, “Density of the ocean crust,” Nature 311 (5986), 555–558 (1984).CrossRefGoogle Scholar
  24. 24.
    R. Cawthorn and N. McKenna, “The extension of the Western Limb, Bushveld Complex (south africa), at Cullinan diamond mine,” Mineral. Mag. 70 (3), 241–256 (2006).CrossRefGoogle Scholar
  25. 25.
    N. I. Christensen and W. D. Mooney, “Seismic velocity structure and composition of the continental crust: a global view,” J. Geophys. Res. Solid Earth 100, 9761–9788 (1995).CrossRefGoogle Scholar
  26. 26.
    J. Cole, S. J. Webb, and C. A. Finn, “Gravity models of the Bushveld complex–have we come full circle?” J. African Earth Sci. 92, 97–118 (2014).CrossRefGoogle Scholar
  27. 27.
    J. Connolly, “Multivariable phase diagrams: an algorithm based on generalized thermodynamics,” Am J Sci 290, 666–718 (1990).CrossRefGoogle Scholar
  28. 28.
    A. Copley, J.-P. Avouac, and J.-Y. Royer, “India–Asia collision and the Cenozoic slowdown of the Indian Plate: implications for the forces driving plate motions,” J. Geophys. Res.: Solid Earth 115 (B3), 2010.Google Scholar
  29. 29.
    C. Corry, “Laccoliths: mechanics of emplacement and growth,” Geol. Soc. Am. Spec. Pap. 220 (1988).Google Scholar
  30. 30.
    P. A. Cundall, “Numerical experiments on localization in frictional materials,” Ingenieur–Archiv 59 (2), 148–159 (1989).CrossRefGoogle Scholar
  31. 31.
    J. de Bremond d’Ars, C. Jaupart, and R. S. J. Sparks, “Distribution of volcanoes in active margins,” J. Geophys. Res. Solid Earth 100, 20 (1995).Google Scholar
  32. 32.
    C. H. Emeleus and V. R. Troll, “The Rum igneous centre, Scotland,” Mineral. Mag. 78, 805–839 (2014).CrossRefGoogle Scholar
  33. 33.
    C. H. Emeleus, M. J. Cheadle, R. H. Hunter, B. G. J. Upton, and W. J. Wadsworth, “The Rum layered suite,” Developments in Petrology 15, 403–439 (1996).CrossRefGoogle Scholar
  34. 34.
    P. C. England and A. B. Thompson, “Pressure–temperature–time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust,” J. Petrol. 25, 894–928 (1984).CrossRefGoogle Scholar
  35. 35.
    P. C. England, “Diffuse continental deformation: length scales, rates and metamorphic evolution,” Phil. Trans. R. Soc. Lond. A 321, 3–22 (1987).CrossRefGoogle Scholar
  36. 36.
    I. J. Ferguson, J. Craven, R. Kurtz, D. Boerner, R. Bailey, X. Wu, M. Orellana, J. Spratt, G. Wennberg, and A. Norton, “Geoelectric response of Archean lithosphere in the western Superior Province, central Canada,” Phys. Earth Planet. Inter. 150, 123–143 (2005).CrossRefGoogle Scholar
  37. 37.
    L. Fleitout and C. Froidevaux, “Tectonic stresses in the lithosphere,” Tectonics 2, 315–324 (1983).CrossRefGoogle Scholar
  38. 38.
    D. W. Forsyth and S. Uyeda, “On the relative importance of the driving forces of plate motions,” Geophys. J. R. Astronom. Soc. 43, 163–200 (1975).CrossRefGoogle Scholar
  39. 39.
    D. M. Fountain, “Is there a relationship between seismic velocity and heat production for crustal rocks?” Earth Planet. Sci. Lett. 79, 145–150 (1986).CrossRefGoogle Scholar
  40. 40.
    E. Francis, “Magma and sediment – I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain,” J. Geol. Soc. London 139, 1–20 (1982).CrossRefGoogle Scholar
  41. 41.
    Y. Gaudemer, P. Tapponnier, and C. Jaupart, “Thermal control on post-orogenic extension in collision belts,” Earth Planet. Sci. Lett. 89, 48–62 (1988).CrossRefGoogle Scholar
  42. 42.
    M. S. Ghiorso, and R. O. Sack, “Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures,” Contrib. Mineral. Petrol. 119 (2–3), 197–212 (1995).CrossRefGoogle Scholar
  43. 43.
    A. F. Glazner, J. M. Bartley, D. S. Coleman, W. Gray, and R. Z. Taylor, “Are plutons assembled over millions of years by amalgamation from small magma chambers,” GSA Today 14, 1099 (2004).CrossRefGoogle Scholar
  44. 44.
    A. R. Greene, S. M. DeBari, P. B. Kelemen, J. Blusztajn, and P. D. Clift, “A detailed geochemical study of island arc crust: the Talkeetna arc section, south–central Alaska,” J. Petrol. 47 (6), 1051–1093 (2006).CrossRefGoogle Scholar
  45. 45.
    W. Griffin, S. O’Reilly, and C. Ryan, “The composition and origin of sub-continental lithospheric mantle,” Geochem. Soc. Spec. Publ. 6, 13–45 (1999).Google Scholar
  46. 46.
    X. Gu, R. Tenzer, and V. Gladkikh, “Empirical models of the ocean-sediment and marine sediment–bedrock density contrasts,” Geosci. J. 18, 439–447 (2014).CrossRefGoogle Scholar
  47. 47.
    L. Guillou, J. C. Mareschal, C. Jaupart, C. Gariepy, G. Bienfait, and R. Lapointe, “Heat flow and gravity structure of the Abitibi belt, Superior Province, Canada,” Earth Planet. Sci. Lett. 122, 447–460 (1994).CrossRefGoogle Scholar
  48. 48.
    B. R. Hacker, “Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust,” Geophys. Monogr. Ser. 96, 337–346 (1996).Google Scholar
  49. 49.
    B. R. Hacker, L. Mehl, P. B. Kelemen, M. Rioux, M. D. Behn, and P. Luffi, “Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry,” J. Geophys. Res. Solid Earth 113 (B3), B03204 (2008).CrossRefGoogle Scholar
  50. 50.
    T. C. Hammer, R. M. Clowes, F. A. Cook, A. J. van der Velden, and K. van Vasude, “The Lithoprobe trans–continental lithospheric cross sections: imaging the internal structure of the North American continent,” Can. J. Earth Sci. 47, 821–857 (2010).CrossRefGoogle Scholar
  51. 51.
    L. M. Heaman, C. O. Bohm, N. Machado, T. E. Krogh, W. Weber, and M. T. Corkery, “The Pikwitonei Granulite Domain, Manitoba: a giant Neoarchean high–grade terrane in the northwest Superior Province,” Can. J. Earth Sci. 48, 205–245 (2011).CrossRefGoogle Scholar
  52. 52.
    W. Hinze, J. Bradley, and A. Brown, “Gravimeter survey in the Michigan basin deep borehole,” J. Geophys. Res. Solid Earth 83, 5864–5868 (1978).CrossRefGoogle Scholar
  53. 53.
    K. Hirose and I. Kushiro, “Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond,” Earth Planet. Sci. Lett. 114 (4), 477–489 (1993).CrossRefGoogle Scholar
  54. 54.
    W. S. Holbrook, D. Lizarralde, S. McGeary, N. Bangs, and J. Diebold, “Structure and composition of the Aleutian island arc and implications for continental crustal growth,” Geology 27, 31–34 (1999).CrossRefGoogle Scholar
  55. 55.
    T. J. B. Holland, and R. R. Powell, “An internally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).CrossRefGoogle Scholar
  56. 56.
    M. Holness, M. Hallworth, A. Woods, and R. Sides, “Infiltration metasomatism of cumulates by intrusive magma replenishment: the wavy horizon, Isle of Rum, Scotland,” J. Petrol. 48 (3), 563–587 (2007).CrossRefGoogle Scholar
  57. 57.
    A. D. Huerta, L. H. Royden, and K. V. Hodges, “The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating,” J. Geophys. Res. Solid Earth 103, 15287–15302 (1998).CrossRefGoogle Scholar
  58. 58.
    A. Indares and T. Rivers, “Textures, metamorphic reactions and thermobarometry of eclogitized metagabbros: a Proterozoic example,” Europ. J. Mineral. 7 (1), 43–56 (1995).CrossRefGoogle Scholar
  59. 59.
    T. N. Irvine, “Crystallization sequences in the muskox intrusion and other layered intrusions. i. olivine–pyroxene–plagioclase relations,” Geol. Soc. S. Afr. Spec. Publ. 1 (7478), 441–476 (1970).Google Scholar
  60. 60.
    H. Isnard and C. Gariepy, “Sm–Nd, Lu–Hf and Pb–Pb signatures of gneisses and granitoids from the La Grande belt: extent of late Archean crustal recycling in the northeastern Superior Province, Canada,” Geochim. Cosmochim. Acta 68, 1099–1113 (2004).CrossRefGoogle Scholar
  61. 61.
    O. Jagoutz and P. B. Kelemen, “Role of arc processes in the formation of continental crust,” Annu. Rev. Earth Planet. Sci. 43, 363–404 (2015).CrossRefGoogle Scholar
  62. 62.
    O. E. Jagoutz and M. Schmidt, “The formation and bulk composition of modern juvenile continental crust: the Kohistan arc,” Chem. Geol. 298–299, 79–96 (2012).CrossRefGoogle Scholar
  63. 63.
    B. Jamtveit, K. Bucher–Nurminen, and H. Austrheim, “Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen Arcs, Western Norway,” Contrib. Mineral. Petrol. 104 (2), 184–193 (1990).CrossRefGoogle Scholar
  64. 64.
    C. Jaupart and C. J. Allegre, “Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes,” Earth Planet. Sci. Lett. 102, 413–429 (1991).CrossRefGoogle Scholar
  65. 65.
    C. Jaupart and J. C. Mareschal, “The thermal structure and thickness of continental roots,“ Lithos 48, 93–114 (1999).CrossRefGoogle Scholar
  66. 66.
    C. Jaupart and J. C. Mareschal, Heat Generation and Transport in the Earth (Cambridge University Press, Cambridge, 2011).Google Scholar
  67. 67.
    C. Jaupart, and J.–C.Mareschal, “Post–orogenic thermal evolution of newborn Archean continents,” Earth Planet. Sci. Lett. 432, 36–45 (2015).CrossRefGoogle Scholar
  68. 68.
    C. Jaupart, J.-C. Mareschal, H. Bouquerel, and C. Phaneuf, “The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective,” J. Geophys. Res. Solid Earth 119, 9130–9155 (2014).CrossRefGoogle Scholar
  69. 69.
    C. Jaupart, S. Labrosse, F. Lucazeau, and J. C. Mareschal, “Temperatures, heat and energy in the mantle of the Earth,” Treatise on Geophysics, Vol. 7. The Mantle, Ed. by D. Bercovici, (Elsevier, New York, 2015), pp. 223–270.Google Scholar
  70. 70.
    C. Jaupart, J.-C. Mareschal, and L. Iarotsky, “Radiogenic heat production in the continental crust,” Lithos 262, 398–427 (2016).CrossRefGoogle Scholar
  71. 71.
    M. Jull and P. B. Kelemen, “On the conditions for lower crustal convective instability,” J. Geophys. Res. Solid Earth 106, 6423–6446 (2001).CrossRefGoogle Scholar
  72. 72.
    B. S. Kamber, “The evolving nature of terrestrial crust in the Hadean, through the Archean, into the Proterozoic,” Precamb. Res. 115, 48–82 (2015).CrossRefGoogle Scholar
  73. 73.
    Y. Kaneko, and T. Miyano, “Contact metamorphism by the Bushveld complex in the northeastern Transvaal, South Africa, J. Mineral. Petrol. Econ. Geol. 85, 66–81 (1990).CrossRefGoogle Scholar
  74. 74.
    J. L. Kavanagh, T. Menand, and R. S. J. Sparks, “An experimental investigation of sill formation and propagation in layered elastic media,” Earth Planet. Sci. Lett. 245, 799–813 (2006).CrossRefGoogle Scholar
  75. 75.
    R. Kay and S. Mahlburg-Kay, “Creation and destruction of lower continental crust,” Geol. Rundsch. 80, 259–278 (1991).CrossRefGoogle Scholar
  76. 76.
    P. Kelemen, K. Hanghoj, and A. Greene, “One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust,” Treatise on Geochemistry. Volume 4. The Crust, 2nd Edition, Ed. by R. L. Rudnick, (Elsevier-Permagon, Oxford, 2014), pp. 749–805.Google Scholar
  77. 77.
    E. M. Kgaswane, A. A. Nyblade, R. J. Durrheim, J. Julia, P. H. Dirks, and S. J. Webb, “Shear wave velocity structure of the Bushveld Complex, South Africa,” Tectonophysics 554, 83–104 (2012).CrossRefGoogle Scholar
  78. 78.
    D. Kohlstedt, B. Evans, S. Mackwell, et al., “Strength of the lithosphere: constraints imposed by laboratory experiments,” J. Geophys. Res. 100, 17–587 (1995).CrossRefGoogle Scholar
  79. 79.
    I. Kukkonen and S. Peltoniemi, “Relationships between thermal and other petrophysical properties of rocks in Finland,” Phys. Earth Planet. Inter. 23, 341–349 (1998).Google Scholar
  80. 80.
    N. J. Kusznir and R. G. Park, “Intraplate lithosphere deformation and the strength of the lithosphere,” Geophys. J. Int. 79, 513–538 (1984).CrossRefGoogle Scholar
  81. 81.
    G. Laske G. Masters, Z. Ma, and M. Pasyanos, “Update on CRUST1.0 - A 1-degree global model of Earth’s crust,” EGU General Assembly Conference Abstracts, (EGU, Vienna, 2013), vol. 15 , pp. EGU2013–2658 (2013).Google Scholar
  82. 82.
    R. Latypov, Basal reversals in mafic sills and layered intrusions, Layered Intrusions (Springer, 2015), pp. 259–293.Google Scholar
  83. 83.
    C.-T. Lee, A. D. Morton, R. W. Kistler, and A. K. Baird, “Petrology and tectonics of phanerozoic continent formation: from island arcs to accretion and continental arc magmatism,” Earth Planet. Sci. Lett. 263, 370–387 (2007).CrossRefGoogle Scholar
  84. 84.
    J. K. Lee, W. I. S. Williams, and D. J. Ellis, “Pb, U and Th diffusion in natural zircon,” Nature 390, 159–162 (1997).CrossRefGoogle Scholar
  85. 85.
    S. Letts, T. H. Torsvik, S. J. Webb, and L. D. Ashwal, “Palaeomagnetism of the 2054 Ma Bushveld Complex (South Africa): implications for emplacement and cooling,” Geophys. J. Int. 179 (2), 850–872 (2009).CrossRefGoogle Scholar
  86. 86.
    J. R. Lister and R. C. Kerr, “The propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid interface,” J. Fluid Mech. 203, 215–249 (1989).CrossRefGoogle Scholar
  87. 87.
    J. R. Lister, “Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors,” J. Fluid Mech. 210, 263–280 (1990).CrossRefGoogle Scholar
  88. 88.
    J. Ludden, C. Hubert, and C. Gariepy, “The tectonic evolution of the Abitibi greenstone belt of Canada,” Geol. Mag. 123, 153–166 (1986).CrossRefGoogle Scholar
  89. 89.
    J. C. Mareschal and C. Jaupart, “Variations of surface heat flow and lithospheric thermal structure beneath the North American craton,” Earth Planet. Sci. Lett. 223, 65–77 (2004).CrossRefGoogle Scholar
  90. 90.
    J. Mareschal, “Thermal regime and post–orogenic extension in collision belts,” Tectonophys. 238, 471–484 (1994).CrossRefGoogle Scholar
  91. 91.
    J.-C. Mareschal and C. Jaupart, “Radiogenic heat production, thermal regime and evolution of continental crust,” Tectonophysics 609, 524–534 (2013).CrossRefGoogle Scholar
  92. 92.
    T. Masterlark, M. Haney, H. Dickinson, T. Fournier, and C. Searcy, “Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography,” J. Geophys. Res. Solid Earth 115, B02409 (2010).CrossRefGoogle Scholar
  93. 93.
    D. McKenzie, “The initiation of trenches: a finite amplitude instability,” Island Arcs, Deep Sea Trenches and Back–Arc Basins, Ed. by M. Talwani and W. Pitman (Maurice Ewing Ser. American Geophysical Union, Washington, DC., 1977), vol. 1, pp. 57–61.Google Scholar
  94. 94.
    S. M. McLennan and S. R. Taylor, “Heat flow and the chemical composition of continental crust,” J. Geol. 104, 377–396 (1996).CrossRefGoogle Scholar
  95. 95.
    C. Meriaux, J. R. Lister, V. Lyakhovsky, and A. Agnon, “Dyke propagation with distributed damage of the host rock,” Earth Planet. Sci. Lett. 165, 177–185 (1999).CrossRefGoogle Scholar
  96. 96.
    K. Mezger, S. Bohlen, and G. N. Hanson, “Metamorphic history of the Archean Pikwitonei granulite domain and the Cross Lake subprovince, Superior Province, Manitoba, Canada,” J. Petrol. 32, 483–517 (1990).CrossRefGoogle Scholar
  97. 97.
    C. Michaut and C. Jaupart, “Two models for the formation of magma reservoirs by small increments,” Tectonophysics 500 (1), 34–49 (2011).CrossRefGoogle Scholar
  98. 98.
    C. Michaut, C. Jaupart, and D. R. Bell, “Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle,” J. Geophys. Res. Solid Earth 112, 4408 (2007).CrossRefGoogle Scholar
  99. 99.
    W. D. Mooney, G. Laske, and T. Guy Masters, “Crust 5.1: A global crustal model at 5° × 5°,” J. Geophys. Res. Solid Earth 103, 727–748 (1998).CrossRefGoogle Scholar
  100. 100.
    P. Morgan, “Crustal radiogenic heat production and the selective survival of ancient continental crust,” J. Geophys. Res. Solid Earth 90, C561–C570 (1985).CrossRefGoogle Scholar
  101. 101.
    D. Moser, E. L. M. Heaman, T. E., Krogh, and J. A. Hanes, “Intracrustal extension of an Archean orogen revealed using single-grain U-Pb zircon geochronology,” Tectonics 15, 1093–1109 (1996).CrossRefGoogle Scholar
  102. 102.
    G. Musacchio, D. J. White, I. Asudeh, and C. J. Thomson, “Lithospheric structure and composition of the Archean western Superior Province from seismic refraction/wide-angle reflection and gravity modeling,” J. Geophys. Res. Solid Earth 109 (B18), 3304 (2004).CrossRefGoogle Scholar
  103. 103.
    A. V. Newman, T. H. Dixon, G. I. Ofoegbu, and J. E. Dixon, “Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: evidence for viscoelastic rheology,” J. Volcanol. Geotherm. Res. 105, 183–206 (2001).CrossRefGoogle Scholar
  104. 104.
    T. Nguuri, J. Gore, D. James, S. Webb, C. Wright, T. Zengeni, O. Gwavava, and J. Snoke, “Crustal structure beneath southern africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons,” Geophys. Res. Lett. 28 (13), 2501–2504 (2001).CrossRefGoogle Scholar
  105. 105.
    P. Olson, E. Reynolds, L. Hinnov, and A. Goswami, “Variation of ocean sediment thickness with crustal age,” Geochem., Geophys., Geosyst. 17, 1349–1369 (2016).CrossRefGoogle Scholar
  106. 106.
    B. Parsons and F. M. Richter, “A relation between the driving force and geoid anomaly associated with mid-ocean ridges,” Earth Planet. Sci. Lett. 51, 445–450 (1980).CrossRefGoogle Scholar
  107. 107.
    J. A. Percival, M. Sanborn-Barrie, T. Skulski, G. Stott, M. Helmstaedt, and D. J. White, “Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies,” Can. J. Earth Sci. 43, 1085–1117 (2006).CrossRefGoogle Scholar
  108. 108.
    J. Percival, T. Skulski, M. Sanborn–Barrie, G. Stott, A. D. Leclair, M. Corkery, and M. Boily, “Geology and tectonic evolution of the Superior Province, Canada,” Tectonic Styles in Canada: The Lithoprobe Perspective, Ed. by J. Percival, F. Cook, and R. Clowes, Spec. Pap. Geol. Ass. Canada 49, 321–378 (2012).Google Scholar
  109. 109.
    H. K. Perry, C. C. Jaupart, J. C. Mareschal, and G. Bienfait, “Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data,” J. Geophys. Res. Solid Earth 111, B04401 (2006).Google Scholar
  110. 110.
    H. K. C. Perry, C. Jaupart, J.-C. Mareschal, and N. M. Shapiro, “Upper mantle velocity–temperature conversion and composition determined from seismic refraction and heat flow,” J. Geophys. Res. Solid Earth 111, B07301 (2006).Google Scholar
  111. 111.
    N. Petford and K. Gallagher, “Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma,” Earth Planet. Sci. Lett. 193, 483–499 (2001).CrossRefGoogle Scholar
  112. 112.
    F. Podmore and A. Wilson, “A reappraisal of the structure, geology and emplacement of the Great Dyke, Zimbabwe,” Mafic Dyke Swarms, Geol. Assoc. Canada, Spec. Pap. 34, 317–330 (1987).Google Scholar
  113. 113.
    A. Poliakov, P. Cundall, Y. Podladchikov, and V. Lyakhovsky, “An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two–and three–layers models,” Flow and Creep in the Solar System: Observations, Modeling and Theory (Springer, 1993), pp. 175–195.Google Scholar
  114. 114.
    H. N. Pollack and D. S. Chapman, “On the regional variation of heat flow, geotherms and thickness of the lithosphere,” Tectonophys. 38, 279–296 (1977).CrossRefGoogle Scholar
  115. 115.
    B. G. Polyak and Y. B. Smirnov, “Relationship between terrestrial heat flow and tectonics of the continents,” Geotectonics 4, 205–213 (1968).Google Scholar
  116. 116.
    G. Ranalli and D. C. Murphy, “Rheological stratification of the lithosphere,” Tectonophysics 132 (4), 281–295 (1987).CrossRefGoogle Scholar
  117. 117.
    G. Ranalli, Rheology of the Earth, 2nd Edition (Chapman Hall, London, 1995).Google Scholar
  118. 118.
    A. Reymer and G. Schubert, “Phanerozoic addition rates to the continental crust and crustal growth,” Tectonics 3, 63–77 (1984).CrossRefGoogle Scholar
  119. 119.
    E. Rivalta, M. Bottinger, and T. Dahm, “Buoyancy-driven fracture ascent: experiments in layered gelatin,” J. Volcanol. Geotherm. Res. 144, 273–285 (2005).CrossRefGoogle Scholar
  120. 120.
    A. Roman, and C. Jaupart, “The fate of mafic and ultramafic intrusions in the continental crust,” Earth Planet. Sci. Lett. 453, 131–140 (2016).CrossRefGoogle Scholar
  121. 121.
    A. Roman and C. Jaupart, “Postemplacement dynamics of basaltic intrusions in the continental crust. J. Geophys. Res. Solid Earth 122, 966–987 (2017).CrossRefGoogle Scholar
  122. 122.
    A. Roman, “Emplacement and Post-Emplacement Dynamics of Magma Reservoirs, Ph.D. Thesis (Institut de Physique du Globe, Paris, 2015).Google Scholar
  123. 123.
    R. L. Rudnick, “Making continental crust,” Nature 378, 571–578 (1995).CrossRefGoogle Scholar
  124. 124.
    R. Rudnick, and S. Gao, “The composition of the continental crust,” Treatise on Geochemistry, 2nd Edition, H. D. Holland, and K. K. Turekian, (Elsevier, Oxford, 2014), pp. 1–51. URL https://www.sciencedirect.com/science/article/pii/B9780080959757003016Google Scholar
  125. 125.
    E. Sawyer, “Formation and evolution of granite magmas during crustal reworking: the significance of diatexites,” J. Petrol. 39, 1147–1167 (1998).CrossRefGoogle Scholar
  126. 126.
    D. Schutt and C. Lesher, “The effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite,” J. Geophys. Res. Solid Earth 111, B05401 (2006). doi 10.1029/2003JB002950CrossRefGoogle Scholar
  127. 127.
    N. M. Shapiro, D. V. Droznin, S. Y. Droznina, S. L. Senyukov, A. A. Gusev, and E. I. Gordeev, “Deep and shallow long–period volcanic seismicity linked by fluid–pressure transfer,” Nature Geosci. 10, 442–445 (2017).CrossRefGoogle Scholar
  128. 128.
    T. Sisson, K. Ratajeski, W. Hankins, and A. Glazner, “Voluminous granitic magmas from common basaltic sources,” Contrib. Mineral. Petrol. 148 (6), 635–661 (2005).CrossRefGoogle Scholar
  129. 129.
    T. W. Sisson, T. L. Grove, and D. S. Coleman, “Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholiths,” Contrib. Mineral. Petrol. 126, 81–108 (1996).CrossRefGoogle Scholar
  130. 130.
    T. Slagstad, “Radiogenic heat production of Archean to Permian geological provinces in Norway,” Norw. J. Geol. 88, 149–166 (2008).Google Scholar
  131. 131.
    S. Sol, C. J. Thomson, J.-M. Kendall, D. White, and J. C. Vandecar, I. Asudeh, and B. Roberts, “Seismic tomographic images of the cratonic upper mantle beneath the Western Superior Province of the Canadian Shield–a remnant Archean slab?” Phys. Earth Planet. Inter. 134, 53–69 (2002).CrossRefGoogle Scholar
  132. 132.
    M. V. Stasiuk, C. Jaupart, and R. S. J. Sparks, “On the variations of flow rate in non-explosive lava eruptions,” Earth Planet. Sci. Lett. 114, 505–516 (1993).CrossRefGoogle Scholar
  133. 133.
    M. Stein and Z. Ben-Avraham, “The mechanism of continental crustal growth,” Treatise on Geophysics, 2nd Ed., Ed. by G. Schubert, (Elsevier, Oxford, 2015), pp. 173–199. URL https://www.sciencedirect.com/science/ article/pii/B9780444538024001597Google Scholar
  134. 134.
    B. Taisne and C. Jaupart, “Dike propagation through layered rocks,” J. Geophys. Res. Solid Earth (1978–2012) 114 (B9), (2009).Google Scholar
  135. 135.
    Y. Tatsumi, “Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle,” Geochem. Geophys. Geosyst. 1 (12), (2000). https://doi.org/10.1029/2000GC000094Google Scholar
  136. 136.
    Y. Tatsumi, and T. Kogiso, “The subduction factory: its role in the evolution of the earth’s crust and mantle,” Geol. Soc. London, Spec. Publ. 219 (1), 55–80 (2003).CrossRefGoogle Scholar
  137. 137.
    Y. Tatsumi, M. Sakuyama, H. Fukuyama, and I. Kushiro, “Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones,” J. Geophys. Res. Solid Earth 88 (B7), 5815–5825 (1985). URL https://agupubs.onlinelibrary.wiley.com/doi/ abs/10.1029/JB088iB07p05815CrossRefGoogle Scholar
  138. 138.
    S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, 1995).Google Scholar
  139. 139.
    T. Thordarson, and S. Self, “The Laki (Skaftar Fires) and Grlmsvotn eruptions,” Bull. Volcanol. 55, 233–263 (1993).CrossRefGoogle Scholar
  140. 140.
    Y. S. Touloukian and C. Y. Ho, Physical Properties of Rocks and Minerals (McGraw-Hill, New York. 1981).Google Scholar
  141. 141.
    B.Tucholke, J.-C. Sibuet, et al., Shipboard scientific party, “Site 1276,” Proc. ODP, Init. Repts. 210, 1–358 (2004).Google Scholar
  142. 142.
    L. R. Wager and G. M. Brown, Layered Igneous Rocks. (Oliver and Boyd, Edinburgh–London, 1968).Google Scholar
  143. 143.
    S. J. Webb, L. D. Ashwal, and R. G. Cawthorn, “Continuity between Eastern and Western Bushveld Complex, South Africa, confirmed by xenoliths from kimberlite,” Contrib. Mineral. Petrol. 162 (1), 101–107 (2011).CrossRefGoogle Scholar
  144. 144.
    D. J. White, G. Musacchio, H. H. Helmstaedt, R. M. Harrap, P. C. Thurston, A. van der Velden, and K. Hall, “Images of a lower–crustal oceanic slab: direct evidence for tectonic accretion in the Archean western Superior province,” Geology 31, 997–1000 (2003).CrossRefGoogle Scholar
  145. 145.
    A. Wilson, “The great dyke of Zimbabwe,” Developments in Petrology 15, 365–402 (1996).CrossRefGoogle Scholar
  146. 146.
    M. A. Yudovskaya, A. J. Naldrett, J. A. Woolfe, G. Costin, and J. A. Kinnaird, “Reverse compositional zoning in the Uitkomst chromitites as an indication of crystallization in a magmatic conduit,” J. Petrol. 56 (12), 2373–2394 (2015).CrossRefGoogle Scholar
  147. 147.
    S. Zhou and M. Sandiford, “On the stability of isostatically compensated mountain belts,” J. Geophys. Res. Solid Earth 97, 14207–14221 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Claude Jaupart
    • 1
    Email author
  • Jean-Claude Mareschal
    • 2
  • Alberto Roman
    • 3
  1. 1.Institut de Physique du GlobeParisFrance
  2. 2.GEOTOP, Université du Québec à Montréal, MontréalCanada
  3. 3.Institut de Physique du GlobeParisFrance

Personalised recommendations