Advertisement

Geochemistry International

, Volume 56, Issue 13, pp 1368–1383 | Cite as

N–C–Ar–He Isotopic Systematics of Quenched Tholeiitic Glasses from the Bouvet Triple Junction Area

  • A. I. BuikinEmail author
  • A. B. Verchovsky
  • N. A. Migdisova
Article
  • 17 Downloads

Abstract

The paper presents pioneering data on the isotopic composition and elemental ratios of nitrogen, carbon (carbon dioxide), helium, and argon in the fluid phase of quenched tholeiitic glasses from different segments of the Bouvet Triple Junction area (BTJ). The data reflect a complicated geodynamic and tectonic history of the area evolution and indicate that the variations in the elemental ratios of the volatile components of the fluid–gas phase were controlled by a number of various factors: elemental fractionation during melt degassing, mixing of gases from different sources, postmagmatic diffusion-controlled helium loss. The nitrogen–argon and noble gas isotope systematics suggest a significant contribution of the atmospheric component to the mantle source of fluids for the samples from the Spiess Ridge and the segment of the Southwest Indian Ridge (SWIR) and a smaller contribution for the Mid-Atlantic Ridge (MAR) samples. For the Spiess Ridge and SWIR, the most probable contaminating agent was water fluid with dissolved gases of atmospheric composition. This fluid may have been brought to the mantle with ancient crustal rocks involved in magma generation. These crustal rocks may represent small fragments of the Gondwana continent with which sedimentary organic matter could be brought into the magma source.

Keywords:

nitrogen, carbon, and argon isotopes fluid inclusions basaltic quenched crusts Bouvet Triple Junction stepwise crushing 

Notes

ACKNOWLEDGMENTS

The authors thank the reviewer K.I. Lokhov for constructive criticism and useful suggestions, which allowed us to improve the manuscript. This study was supported by the Russian Foundation for Basic Research, project no. 16-05-00974.

REFERENCES

  1. 1.
    C. J. Ballentine and D. Barfod, “The origin of air-like noble gases in MORB and OIB,” Earth Planet. Sci. Lett. 180, 39–48 (2000).CrossRefGoogle Scholar
  2. 2.
    Z. C. Ben-Avraham, J. H. Hartnady, and J. A. Malan, “Early tectonic extension between the Agulhas Bank and the Falkland Plateau due to the rotation of the Lafonia microplate,” Earth Planet. Sci. Lett. 117, 43–58 (1993).CrossRefGoogle Scholar
  3. 3.
    A. I. Buikin, M. Trieloff, E. V. Korochantseva, J. Hopp, M. Kaliwoda, H.-P. Meyer, and R. Altherr, “Distribution of mantle and atmospheric argon in mantle xenoliths from the Western Arabian Peninsula: constraints on timing and composition of metasomatizing agents in the lithospheric mantle,” J. Petrol. 51, 2547–2570 (2010).CrossRefGoogle Scholar
  4. 4.
    A. I. Buikin, A. B. Verchovsky, V. A. Grinenko, S. A. Silantyev, V. S. Sevast’yanov, Yu. A. Nevinnyi, and E. P. Smirnova, “C, N, He, and Ar isotope and element ratios in fluid inclusions from MORB chilled glasses: stepwise crushing data,” Geochem. Int. 51 (4), 338–343 (2013).CrossRefGoogle Scholar
  5. 5.
    A. I. Buikin, I. P. Solovova, A. B. Verchovsky, L. N. Kogarko, and A. A. Averin, “PVT parameters of fluid inclusions and the C, O, N, and Ar isotopic composition in a garnet lherzolite xenolith from the Oasis Jetty, East Antarctica,” Geochem. Int. 52 (10) 805–821 (2014).CrossRefGoogle Scholar
  6. 6.
    A. I. Buikin, N. A. Migdisova, J. Hopp, E. V. Korochantseva, and M. Trieloff, “He, Ne, Ar stepwise crushing data on basalt glasses from different segments of Bouvet Triple Junction,” Geochem. Int. 55 (11), 977–987 (2017).CrossRefGoogle Scholar
  7. 7.
    P. G. Burnard, D. Graham, and G. Turner, “Vesicle-specific noble gas analyses of „popping rock“: Implications for primordial noble gases in Earth,” Science 276, 568–571 (1997).CrossRefGoogle Scholar
  8. 8.
    P. Cartigny, N. Jendrzejewski, F. Pineau, E. Petit, and M. Javoy, “Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge,” Earth Planet. Sci. Lett. 194, 241–257 (2001).CrossRefGoogle Scholar
  9. 9.
    J. S. Dickey, E. A. Frey, S. R. Hart, E. B. Watson, and G. Thompson, “Geochemistry and petrology of dredged basalts from the Bouvet triple junction, South Atlantic,” Geochim. Cosmochim. Acta 41, 1105–1118 (1977).CrossRefGoogle Scholar
  10. 10.
    E. P. Dubinin, N. M. Sushchevskaya, and A. L. Grokholskii, “The evolution of spreading ridges of the South Atlantic and spatiotemporal position of the Bouvet Triple Junction,” Russ. J. Earth Sci. 1 (5), 423–435 (1999).CrossRefGoogle Scholar
  11. 11.
    T. P. Fisher, P. Burnard, B. Marty, D. R. Hilton, E. F?ri, F. Palhol, Z. D. Sharp, and F. Mangasini, “Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites,” Nature 459, 77–80 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Jambon, H. Weber, and O. Braun, “Solubilities of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C: geochemical implications,” Geochim. Cosmochim. Acta 50, 401–408 (1986).CrossRefGoogle Scholar
  13. 13.
    M. C. Kleinrock and J. Ph. Morgan, “Triple junction reorganization,” J. Geophys. Res. 93, 2981–2996 (1988).CrossRefGoogle Scholar
  14. 14.
    R. Sh. Krymsky, N. M. Sushchevskaya, B. V. Belyatsky, and N. A. Migdisova, “Peculiarities of the osmium isotopic composition of basaltic glass from the western termination of the Southwest Indian Ridge,” Dokl. Earth Sci. 428 (7) 1126–1130 (2009).CrossRefGoogle Scholar
  15. 15.
    M. D. Kurz, A. P. le Roex, and H. J. B. Dick, “Isotope heterogeneity near the Bouvet triple junction,” Geochim. Cosmochim. Acta. 62, 841–852 (1998).CrossRefGoogle Scholar
  16. 16.
    L. A. Lawver, J. G. Sclater, and L. Meinke, ”Mesozoic and Cenozoic reconstructions of the South Atlantic,” Tectonophysics 114, 233–254 (1985).CrossRefGoogle Scholar
  17. 17.
    A. P. Le Roex, H. J. B. Dick, A. M. Reid, F. A. Frey, and S. R. Hart, “Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 degrees East,” J. Petrol. 24 (3) 267–318 (1983).CrossRefGoogle Scholar
  18. 18.
    A. P. Le Roex, H. J. B. Dick, A. M. Reid, and A. J. Erlank, “Ferrobasalts from the Spiess Ridge segment of the southwest Indian Ridge,” Earth Planet. Sci. Lett. 60, 437–451 (1982).CrossRefGoogle Scholar
  19. 19.
    A. P. Le Roex, H. J. B. Dick, A. M. Reid, F. A. Frey, and A. J. Erlank, “Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume,” Contrib. Mineral. Petrol. 90, 367–380 (1985).CrossRefGoogle Scholar
  20. 20.
    A. P. Le Roex, H. J. B. Dick, and R. T. Watkins, “Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′ E to 14°38′ E,” Contrib. Mineral. Petrol. 110, 253–268 (1992).CrossRefGoogle Scholar
  21. 21.
    M. Ligi, E. Bonatti, G. Bortoluzzi, G. Carrara, P. Fabretti, D. Penitenti, D. Gilod, A. Peyve, S. Skolotnev, and N. Turko, “Death and transfiguration of a triple junction in the South Atlantic,” Science 276, 243–245 (1997).CrossRefGoogle Scholar
  22. 22.
    M. Ligi, E. Bonatti, G. Bortoluzzi, G. Carrara, and Pl. Fabretti, “Bouvet triple junction in the South Atlantic: geology and evolution,” J. Geophys. Res. 104 (12), 29365–29385 (1999).CrossRefGoogle Scholar
  23. 23.
    D. P. Mattey, R. A. Exley, and C. T. Pillinger, “Isotopic composition of CO2 and dissolved carbon species in basalt glass,” Geochim. Cosmochim. Acta 53, 2377–2386 (1989).CrossRefGoogle Scholar
  24. 24.
    N. A. Migdisova, N. M. Sushchevskaya, A. V. Lattenen, and E. M. Mikhalsky, Variations in the composition of clinopyroxene from the basalts of various geodynamic settings of the Antarctic Region,” Petrology 12 (2), 206–224 (2004).Google Scholar
  25. 25.
    N. A. Migdisova, A. V. Sobolev, N. M. Sushchevskaya, E. P. Dubinin, and D.V. Kuzmin, Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts,” Russ. Geol. Geophys. 58 (11) 1289–1304 (2017).CrossRefGoogle Scholar
  26. 26.
    Y. Nishio, T. Ishii, T. Gamo, and Y. Sano, Volatile element isotopic systematic of the Rodrigues Triple Junction Indian Ocean MORB: implications for mantle heterogeneity,” Earth Planet. Sci. Lett. 170, 241–253 (1999).CrossRefGoogle Scholar
  27. 27.
    A. A. Peyve, A. S. Perfil’ev, Yu. M. Pushcharovskii, V. A. Simonov, N. N. Turko, and Yu. N. Raznitsin, “The Structure of the southern end of Mid-Atlantic Ridge (the Bouvet Triple Junction),” Geotektonika 1, 40–57 (1995).Google Scholar
  28. 28.
    F. Pineau and M. Javoy, “Carbon isotopes and concentrations in mid-oceanic ridge basalts,” Earth Planet. Sci. Lett. 62, 239–257 (1983).CrossRefGoogle Scholar
  29. 29.
    F. Pineau, M. Javoy, and Y. Bottinga, “13C/12C ratios of rocks and inclusions in the popping rocks of the Mid-Atlantic ridge and their bearing on the problems of isotopic composition of deep seated carbon,” Earth Planet. Sci. Lett. 29, 413–421 (1976).CrossRefGoogle Scholar
  30. 30.
    J. G. Shilling, G. Thompson, R. Kinzley, and S. E. Humphris, “Hotspot-migrating ridge interaction in South Atlantic: geochemical evidence,” Nature 313, 187–191 (1985).CrossRefGoogle Scholar
  31. 31.
    V. A. Simonov, A. A. Peyve, V. Yu. Kolobov, A. A. Milosnov, and S. V. Kovyazin, “Magmatic and hydrothermal processes in the Bouvet triple junction region (South Atlantic),” Terra Nova. 8, 45–424 (1996).CrossRefGoogle Scholar
  32. 32.
    N. M. Sushchevskaya, E. V. Koptev-Dvornikov, N. A. Migdisova, and D. M. Khvorov, “Crystallization and geochemistry of tholeiitic magma at the Bouvet Triple Junction, Southwest Indian Ridge,” Russ. J. Earth Sci. 1 (3), 221–250 (1999).CrossRefGoogle Scholar
  33. 33.
    N. M. Sushchevskaya, N. A. Migdisova, B. V. Belyatsky, and Peyve, A. A. “Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean,” Geochem. Int. 41(1) 1–20 (2003).Google Scholar
  34. 34.
    M. Trieloff, J. Kunz, D. A. Clague, D. Harrison, and C. J. Allegre, “The nature of pristine noble gases in mantle plumes,” Science 288, 1036–1038 (2000).CrossRefGoogle Scholar
  35. 35.
    A. B. Verchovsky, M. A. Sephton, I. P. Wright, and C. T. Pillinger, “Separation of planetary noble gas carrier from bulk carbon in enstatite chondrites during stepped combustion,” Earth Planet. Sci. Lett. 199, 243–255 (2002).CrossRefGoogle Scholar
  36. 36.
    A. B. Verkhovskiy, E. K. Yurgina, Yu. A. Shukolyukov, “He and Ar in Midocean ridge basalt glasses and the outgassing of mantle magmas,” Geochem. Int. 28(9) 18–28 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Buikin
    • 1
    Email author
  • A. B. Verchovsky
    • 2
  • N. A. Migdisova
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia
  2. 2.The Open University, Walton Hall, Milton KeynesUnited Kingdom

Personalised recommendations