Geochemistry International

, Volume 56, Issue 12, pp 1135–1147 | Cite as

Genesis of Charoite Rocks in the Murun Massif, Aldan Shield, Russia

  • N. V. Vladykin
  • A. A. Borovikov
  • E. Yu. Dokuchits
  • V. G. Thomas


Data on mineral-hosted inclusions indicate that the charoite rocks crystallized in a heterogeneous medium of carbonate–silicate and carbonate melts, gaseous and H2O–salt fluids. Our results indicate that the early rock-forming minerals of the charoite rocks started to crystallize at high temperatures (>800°C), and crystallization may have terminated at lower temperatures (600–450°С). Data on the melt and fluid inclusions confirm the conclusion that the charoite rocks are of magmatic origin. The facts that these rocks are typically found as vein- and lens-shaped bodies, the composition of these rocks does not correlate with the composition of the host rocks, and the occurrence of chilled fine-grained domains of the charoite rocks also suggest that these rocks crystallized from magmatic melt.


charoite rocks melt and fluid inclusions studying mineral-hosted inclusions 



The authors thank I.N. Kupriyanova of the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, for assistance with IR and Raman spectroscopic studies of the inclusions. S.V. Palesskii is thanked for help with LA-ICP-MS analysis of the inclusions. The authors also thank V.B. Naumov and I.P. Solovova for valuable comments and recommendations, which allowed the authors to improve the manuscript. This study was financially supported by the Russian Foundation for Basic Research, project no. 17-55-45028 and government-financed project no. 0330-2016-0001.


  1. 1.
    Yu. A. Alekseev, “Carbonatites of the Murun ultra-potassic alkaline complex,” Geol. Geofiz., no. 9, 62–68 (1982).Google Scholar
  2. 2.
    A. Audétat, D. Günther, and C. A. Heinrich, “Formation of a magmatic–hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions,” Science 279 (5359), 2091–2094 (1998).CrossRefGoogle Scholar
  3. 3.
    V. M. Biryukov and N. V. Berdnikov, “Paragenetic link of charoite mineralization with alkaline metasomatism,” Zap. Ross. Mineral. O-va, 121 (6), 59–76 (1992).Google Scholar
  4. 4.
    A. S. Borisenko, “Cryometric analysis of salt composition of solutions in gas liquid inclusions in minerals,” Application of Data on Mineral-Hosted Inclusions in Exploration and Search for Ore Deposits, Ed. by N. P. Laverov, (Nedra, Moscow, 1982), pp. 37–47.Google Scholar
  5. 5.
    A. A. Borovikov, T. A. Bul’bak, A. S. Borisenko, A. L. Ragozin, and S. V. Palesskii, “The behavior of ore elements in oxidized heterophase chloride and carbonate–chloride–sulfate fluids of porphyry Cu–Mo (Au) deposits (from experimental data),” Russ. Geol. Geophys., 56 (3), 435–445 (2015).CrossRefGoogle Scholar
  6. 6.
    E. Yu. Dokuchits, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGKh SO RAN, Irkutsk, 2016) [in Rissian].Google Scholar
  7. 7.
    M. L. Frezzotti, F. Tecce, and A. Casagli, “Raman spectroscopy for fluid inclusion analysis,” J. Geochem. Explor. 112, 1–20 (2012).CrossRefGoogle Scholar
  8. 8.
    D. Günther and C. A. Heinrich, “Enhanced sensitivity in laser ablation ICP-mass-spectrometry using heliumargon mixtures as aerosol carrier,” J. Anal. At. Spectrom. 14, 1363–1368 (1999).CrossRefGoogle Scholar
  9. 9.
    D. Günther, R. Frischknecht, C. A. Heinrich, and H.‑J. Kahlert, “Capabilities of an argon fluoride 193 nm Excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials,” J. Anal. At. Spectrom. 12, 939–944 (1997).CrossRefGoogle Scholar
  10. 10.
    D. Günther, A. Audétat, R. Frischknecht, and C. A. Heinrich, “Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS),” J. Anal. At. Spectrom.13, 263–270 (1998).CrossRefGoogle Scholar
  11. 11.
    C. A. Heinrich, T. Pettke, W. E. Halter, M. Aigner-Torres, A. Audétat, D. Günther, B. Hattendorf, D. Bleiner, M. Guillong, and I. Horn, “Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry,” Geochim. Cosmochim. Acta 67, 3473–3497 (2003).CrossRefGoogle Scholar
  12. 12.
    A. A. Konev, E. I. Vorob’ev, and K. A. Lazebnik, Mineralogy of the Murun Alkaline Massif (SO RAN NITs OGGIM, Novosibirsk, 1996) [in Russian].Google Scholar
  13. 13.
    H. P. Longerich, S. E. Jackson, and D. Günther, “Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation,” J. Anal. At. Spectrom. 11 (9), 899–904 (1996).CrossRefGoogle Scholar
  14. 14.
    V. B. Naumov, V. S. Kamenetsky, R. Thomas, and B. N. Ryzhenko, “Inclusions of silicate and sulfate melts in chrome diopside from the Inagli deposit, Yakutia, Russia,” Geochem. Int. 46(6) 554–564 (2008).CrossRefGoogle Scholar
  15. 15.
    L. I. Panina and L. M. Usol’tseva, “Role of liquid immiscibility in the formation of calcite carbonatites of the Malyi Murun Massif,” Geol. Geofiz. 41 (5), 655–670(2000).Google Scholar
  16. 16.
    V. Yu. Prokofiev and E. I. Vorob’ev, “P–T conditions of the formation of strontium–barium carbonatites, chariots, and torgolites of the Murun alkaline massif (East Siberia),” Geokhimiya, No. 10, 1444–1452 (1991).Google Scholar
  17. 17.
    V. Yu. Prokofiev, C. Szabo, V. A. Kovalenker, L. Aradi, and R. Kaldos, “New data on fluid and melt inclusions in quartz from Sr–Ba carbonatites (Murun, E. Siberia),” Proceedings of 16 th All-Russia Conference on Mineral-Hosted Inclusions, Ed. by I. S. Peretyazhko, (Inst. Geograf. Im. Sochava SO RAN, Irkutsk, 2014), pp. 96–97.Google Scholar
  18. 18.
    V. N. Rogova, “Conditions of formation of charoite rock: a new jewelry–ornamental stone,” Gemstones. Proceedings of 11th MMA Congress, Ed. by A. V. Sidorenko (Nauka, Leningrad, 1980), pp. 79–86 [in Russian].Google Scholar
  19. 19.
    S. Z. Smirnov, V. G. Tomas, E. N. Sokolova, and I. N. Kupriyanov, “Experimental study of the leak-tightness of water-containing silicate melt inclusions under the confining pressure of D2O at 650°C and 3 kbar,” Russ. Geol. Geophys. 52 (5), 537–547 (2011).CrossRefGoogle Scholar
  20. 20.
    T. Ulrich, D. Günther, and C. A. Heinrich, “The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina,” Econ. Geol. 96, 1743–1774 (2001).CrossRefGoogle Scholar
  21. 21.
    N. V. Vladykin, “Malyi Murun volcano-plutonic complex: an example of differentiated mantle magmas of lamproitic type,” Geochem. Int. 38 (1), 573–583 (2000).Google Scholar
  22. 22.
    N. V. Vladykin, “The unique Murun Massif of ultra-potassium agpaitic alkaline rocks and carbonatites: magmatism and genesis,” Applied Geochemistry. Volume 7. Mineralogy, Geochemistry, and Genetic Types of Deposits. Book. 2. Genetic Types of Deposoits, Ed. By E. K. Burenkov and A. A. Kremenetsky, (IMGRE, Moscow, 2005), vol. 7, 20.Google Scholar
  23. 23.
    N. V. Vladykin, “Potassium alkaline lamproite–carbonatite complexes: petrology, genesis, and ore reserves,” Russ. Geol. Geophys., 50 (12), 1119–1128 (2009).CrossRefGoogle Scholar
  24. 24.
    N. V. Vladykin, “Genesis and crystallization of ultramafic alkaline carbonate magmas of Siberia: ore potential, mantle sources, and relationship with plume activity,” Russ. Geol. Geophys. 57 (5), 698–712 (2016).CrossRefGoogle Scholar
  25. 25.
    N. V. Vladykin, and V. I. Simonov, “Temperature of formation of charoitic rocks,” Thermobarogeochemistry of Mineral-Formingn Processes. Volume 3. Volatiles, Ed. By V. A. Simonov and N. M. Podgornykh (Nauka, Novosibirsk, 1994), pp. 52–60.Google Scholar
  26. 26.
    N. V. Vladykin, L. N. Matveeva, N. G. Bogacheva, and Yu. A. Alekseev, “New data on charoite and charoitic rocks,” Mineralogy and Genesis of Gemstones of East Siberia, Ed. by O. M. Glazunov (Nauka, Novosibirsk, 1983), pp. 41–56 [in Russian].Google Scholar
  27. 27.
    E. I. Vorob’ev, Charoite (Geo, Novosibirsk, 2008) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of SciencesIrkutskRussia
  2. 2.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations