Geochemistry International

, Volume 56, Issue 12, pp 1156–1171 | Cite as

Physicochemical Parameters and Geochemical Features of Fluids of Paleozoic Gold Deposits

  • V. Yu. Prokofiev
  • V. B. Naumov
  • O. F. Mironova


This paper continues the generalization of literature data on physicochemical parameters and chemical features of fluids of endogenous gold deposits. The average values and ranges of temperature, pressure, and salinity of fluids from Paleozoic gold deposits are estimated. Peculiarities of gas composition of ore forming fluids at these deposits are revealed. Parameters of mineral-forming fluids of Paleozoic gold deposits are compared with those of Archean and Proterozoic gold deposits.


gold deposits Paleozoic fluid inclusions physicochemical parameters mineral-forming fluids large and superlarge deposits 



We are grateful to E.M. Spiridonov for constructive comments taken into account during manuscript editing.

This work was performed in the framework of the Program of Basic Research of State Academies of Sciences (project no. 72-4) and Russian Foundation for Basic Research (project no. 17-05-01167а).


  1. 1.
    M. M. Allan, G. W. Morrison, and B. W. D. Yardley, “Physicochemical evolution of a porphyry-breccia system: A laser ablation ICP-MS study of fluid inclusions in the Mount Leysbon Au deposit, Queensland, Australia,” Econ. Geol. 106, 413–436 (2011).CrossRefGoogle Scholar
  2. 2.
    E. M. Baker and A. S. Andrew, “Geologic, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kidston, Queensland, Australia,” Econ. Geol. 86, 810–830 (1991).CrossRefGoogle Scholar
  3. 3.
    T. Baker, “Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits,” Econ. Geol. 97, 1111–1117 (2002).CrossRefGoogle Scholar
  4. 4.
    I. A. Baksheev, V. Yu. Prokofiev, and V. I. Ustinov, “Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, Central Urals: evidence from fluid inclusions and stable isotopes,” Geochem. Int. (Suppl. 2), S129–S144 (2001).Google Scholar
  5. 5.
    J.-P. Bellot, C. Lerouge, L. Bailly, and V. Bouchot, “The Biards Sb–Au-bearing shear zone (Massif Central, France): an indicator of crustal-scale transcurrent tectonics guiding late Variscan collapse,” Econ. Geol. 98, 1427–1447 (2003).CrossRefGoogle Scholar
  6. 6.
    R. E. Bobis, S. Jaireth, and G. W. Morrison, “The anatomy of a carboniferous epithermal ore shoot at Pajingo, Queensland: setting, zoning, alteration, and fluid conditions,” Econ. Geol. 90, 1776–1798 (1995).CrossRefGoogle Scholar
  7. 7.
    M. C. Boiron, M. Cathelineau, and J.-J. Trescases, “Conditions of gold-bearing arsenopyrite crystallization in the Villeranges basin, Marche-Combrailles shear zone, France: A mineralogical and fluid inclusion study,” Econ. Geol. 84, 1340–1362 (1989).CrossRefGoogle Scholar
  8. 8.
    M.-Ch. Boiron, A. Barakat, M. Cathelineau, D. A. Banks, J. Durisova, and P. Moravek, “Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia),” Chem. Geol. 173, 207–225 (2001).CrossRefGoogle Scholar
  9. 9.
    N. S. Bortnikov, V. Yu. Prokofiev, and N. V. Razdolina, “Origin of the Charmitan gold–quartz deposit (Uzbekistan),” Geol. Ore Dep. 38 (3), 208–226 (1996).Google Scholar
  10. 10.
    H. Bril and D. Beaufort, “Hydrothermal alteration and fluid circulation related to W, Au, and Sb vein mineralizations, Haut Allier, Massif Central, France,” Econ. Geol. 84, 2237–2251 (1989).CrossRefGoogle Scholar
  11. 11.
    A. Cepedal, M. Fuertes-Fuente, A. Martín-Izard, J. García-Nieto, and M. C. Boiron, “An intrusion-related gold deposit (IRGD) in the NW of Spain, the Linares deposit: Igneous rocks, veins and related alterations, ore features and fluids involved,” J. Geochem. Explor. 124, 101–126 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Chai, J.-G. Sun, Sh.-W. Xing, Li B., Lu Ch. Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern Heilongjiang Province, NE China. Ore Geol. Rev. 72, 1022–1036 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Cole, J. J. Wilkinson, C. Halls, and T. J. Serenko, “Geological characteristics, tectonic setting, and preliminary interpretations of the Jilau gold-quartz vein deposit, Tajikistan,” Mineral. Dep. 35, 600–618 (2000).CrossRefGoogle Scholar
  14. 14.
    P. Dhamelincourt, J.-M. Beny, J. Dubessy, and B. Poty, “Analyse d’inclusions fluides a la microsonde MOLE a effet Raman,” Bull. Mineral. 102, 600–610 (1979).Google Scholar
  15. 15.
    B. Fu, M. A.Kendrick, A. M. Fairmaid, D. Phillips, C. J. L. Wilson, and T. P. Mernagh, “New constraints on fluid sources in orogenic gold deposits, Victoria, Australia,” Contrib. Mineral. Petrol. 163, 427–447 (2012).CrossRefGoogle Scholar
  16. 16.
    B. Fu, T. P. Mernagh, A. M. Fairmaid, D. Phillips, and M. Kendrick, “CH4–N2 in the Maldon gold deposit, central Victoria, Australia,” Ore Geol. Rev. 58, 225–237 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Fuertes-Fuente, A. Cepedal, A. Lima, A. Doria, M. A. Ribeiro, and A. Guedes, “The Au-bearing vein system of the Limarinho deposit (northern Portugal): Genetic constraints from Bi-chalcogenides and Bi–Pb–Ag sulfosalts, fluid inclusions and stable isotopes,” Ore Geol. Rev. 72, 213–231 (2016).CrossRefGoogle Scholar
  18. 18.
    Z. L. Gao, T. A. P. Kwak, A. Changkakoti, E. Hussein, and J. Gray, “Supergene ore and hypogene nonore mineralization at the Nagambie sediment-hosted gold deposit, Victoria, Australia,” Econ. Geol. 90, 1747–1763 (1995).CrossRefGoogle Scholar
  19. 19.
    A. D. Giles and B. Marshall, “Genetic significance of fluid inclusions in the CSA Cu–Pb–Zn deposit, Cobar, Australia,” Ore Geol. Rev. 24, 241–266 (2004).CrossRefGoogle Scholar
  20. 20.
    R. J. Goldfarb, D. I. Groves, and S. Gardoll, “Orogenic gold and geologic time: a global synthesis,” Ore Geol. Rev. 18, 1–75 (2001).CrossRefGoogle Scholar
  21. 21.
    T. Graupner, U. Kempe, E. T. C. Spooner, C. J. Bray, A. A. Kremenetsky, and I. Irmer, “Microthermometric, laser Raman spectroscopic, and volatile-ion chromatographic analysis of hydrothermal fluids in the Paleozoic Muruntau Au-bearing quartz vein ore field, Uzbekistan,” Econ. Geol. 96, 1–23 (2001).Google Scholar
  22. 22.
    V. I. Grebenshchikova, V. Yu. Prokofiev, and Yu. P. Troshin, “New data on conditions of formation of gold veins of the Kommunar deposit, Kuznetsk Alatau,“ Dokl. Akad. Nauk 340 (2), 239–242 (1995).Google Scholar
  23. 23.
    Y. Jia, X. Li, and R. Kerrich, “A fluid inclusion study of Au-bearing quartz vein systems in the Central and North Deborah deposits of the Bendigo gold field, central Victoria, Australia,” Econ. Geol. 95, 467–493 (2000).Google Scholar
  24. 24.
    A. Kay and D. F. Strong, “Geologic and fluid controls on As–Sb–Au mineralization in the Moretons Harbour area, Newfoundland,” Econ. Geol. 78, 1590–1604 (1983).CrossRefGoogle Scholar
  25. 25.
    S. E. Kesler and B. H. Wilkinson, “The role of exhumation in the temporal distribution of ore deposits,” Econ. Geol. 101, 919–922 (2006).CrossRefGoogle Scholar
  26. 26.
    M. O. Khomenko, N. A. Gibsher, A. A. Tomilenko, T. A. Bul’bak, M. A. Ryabukha, and D. V. Semenova, “Physicochemical parameters and age of the Vasil’kovskoe gold deposit, Northern Kazakhastan,” Russ. Geol. Geophys. 57 (12), 1728–1749 (2016).CrossRefGoogle Scholar
  27. 27.
    D. J. Kontak and K. Kyser, “A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: evidence for multiple fluid,” Mineral. Dep. 46, 337–363 (2011).CrossRefGoogle Scholar
  28. 28.
    D. J. Kontak, R. J. Horne, and P. K. Smith, “Hydrothermal characterization of the West Gore Sb–Au deposit, Meguma Terrane, Nova Scotia, Canada,” Econ. Geol. 91, 1239–1262 (1996).CrossRefGoogle Scholar
  29. 29.
    V. A. Kovalenker, V. B. Naumov, and V. Yu. Prokofiev, “Mineralogical-geochemical tendencies and PT-parameters of the formation of productive mineral assemblages of the Kochbulak ore field,” Geol. Ore Deposits, No. 1, 38–52 (1988).Google Scholar
  30. 30.
    O. P. Kreuzer, “Intrusion-hosted mineralization in the Charters Towers goldfield, North Queensland: new isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins,” Econ. Geol. 100, 1583–1603 (2005).CrossRefGoogle Scholar
  31. 31.
    J. Q. Lai, P. J. Ju, J. J. Tao, B. R. Yang, and X. Y. Wang, “Characteristics of fluid inclusions and metallogenesis of Annage gold deposit in Qinghai Province, China,” Open J. Geol. 5, 780–794 (2015).CrossRefGoogle Scholar
  32. 32.
    N. P. Laverov, V. Yu. Prokofiev, V. V. Distler, M. A. Yudovskaya, A. M. Spiridonov, V. I. Grebenshchikova, and N. L. Matel, “New data on conditions of ore deposition and composition of ore-forming fluids in the Sukhoi Log gold–platinum deposit,” Dokl. Earth Sci. 371 (1), 357–361 (2000).Google Scholar
  33. 33.
    D. M. Lawrence, P. J. Treloqr, A. H. Rankin, A. Boyce, and P. Harbidge, “A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: Implications for multifluid sources in the generation of orogenic gold deposits,” Econ. Geol. 108, 229–257 (2013).CrossRefGoogle Scholar
  34. 34.
    H. Y. Liang, P. Xia, X. Z. Wang, J. P. Cheng, Z. H. Zhao, and C. Q. Liu, “Geology and geochemistry of the adjacent Changkeng gold and Fuwang silver deposits, Guangdong Province, South China,” Ore Geol. Rev. 31, 304–318 (2007).CrossRefGoogle Scholar
  35. 35.
    X. Long, N. Hayward, G. Begg, F. Minlu, W. Fangzheng, and F. Pirajno, “The Jinxi-Yelmand high-sulfidation epithermal gold deposit, Western Tianshan, Xinjiang Province, P.R.China,” Ore Geol. Rev. 26, 17–37 (2005).CrossRefGoogle Scholar
  36. 36.
    C. Makoundi, K. Zawa, R. R. Large, S. Meffre, C.-K. Lai, and T. G. Hoe, “Geology, geochemistry and metallogenesis of the Selinsing gold deposit, Central Malaysia,” Gondwana Res. 26, 241–261 (2014).CrossRefGoogle Scholar
  37. 37.
    J. Mao, Y. Li, R. Goldfarb, Y. He, and K. Zaw, “Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization?” Econ. Geol. 98, 517–534 (2003).Google Scholar
  38. 38.
    E. Marcoux, Kh. Nerci, Y. Branquet, C. Ramboz, G. Ruffet, J.-J. Peucat, R. Stevenson, and M. Jebrak, “Late-Hercynian intrusion-related gold deposits: an integrated model on the Tighza polymetallic district, central Morocco,” J. African Earth Sci. 107, 65–88 (2015).CrossRefGoogle Scholar
  39. 39.
    K. G. McQueen and C. Perkins, “The nature and origin of a granitoid-related gold deposit at Dargue’s Reef, Major’s Creek, New South Wales,” Econ. Geol. 90, 1646–1662 (1995).CrossRefGoogle Scholar
  40. 40.
    T. P. Mernagh, “A fluid inclusion study of the Fosterville Mine: a turbidite-hosted gold field in the western Lachlan fold belt, Victoria, Australia,” Chem. Geol. 173, 91–106 (2001).CrossRefGoogle Scholar
  41. 41.
    O. F. Mironova, “Volatile components of natural fluids: evidence from inclusions in minerals: methods and results,” Geochem. Int. 48 (1), 83–90 (2010).CrossRefGoogle Scholar
  42. 42.
    O. F. Mironova, A. N. Salazkin, and V. B. Naumov, “Bulk and point analysis of volatiles in fluid inclusions, Geokhimiya,” No. 7, 974–984 (1995).Google Scholar
  43. 43.
    A. C. Mugas Lobos and M. F. Marquez-Zavalia, “Fluid inclusion and stable isotope studies at Don Sixto, a precious metal low sulfidation deposit in Mendoza province, Argentina,” Resour. Geol. 63, 350–359 (2013).CrossRefGoogle Scholar
  44. 44.
    E. A. Naumov, A. A. Borovikov, A. S. Borisenko, M. V. Zadorozhnyi, and V. V. Murzin, “Physicochemical conditions of formation of epithermal gold–mercury deposits,” Russ. Geol. Geophys. 43 (12), 1055–1064 (2002).Google Scholar
  45. 45.
    V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings,” Geochem. Int. 42 (10), 977–987 (2004).Google Scholar
  46. 46.
    V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Principal physicochemical parameters of natural mineral-forming fluids,” Geochem. Int. 47 (8), 777–802 (2009).CrossRefGoogle Scholar
  47. 47.
    V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Physicochemical formation parameters of hydrothermal mineral deposits: evidence from fluid inclusions. II. Gold, silver, lead, and zinc deposits,” Geochem. Int. 52 (6), 433–455 (2014).CrossRefGoogle Scholar
  48. 48.
    V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic Melts,” Geochem. Int. 55 (7), 629–653 (2017).CrossRefGoogle Scholar
  49. 49.
    P. Ni, G. G.Wang, H. Chen, Y. F. Xu, S. J. Guan, J. Y. Pan, and L. Li, “An Early Paleozoic orogenic gold belt along the Jiang-Shao Fault, South China: evidence from fluid inclusions and Rb-Sr dating of quartz in the Huangshan and Pingshui deposits,” J. Asian Earth Sci. 103, 87–102 (2015).CrossRefGoogle Scholar
  50. 50.
    F. J. Nie, “Geology and origin of the Dongping alkalic-type gold deposit, Northern Hebei province, People’s Republic of China,” Resour. Geol. 48, 139–158 (1998).CrossRefGoogle Scholar
  51. 51.
    X. Pan, W. Liu and Z. Hou, “Ore-forming fluids as sampled by sulfide- and quartz-hosted fluid inclusions in the Jinwozi lode gold deposit, Eastern Tianshan Mountains of China,” Resour. Geol. 64, 183–208 (2014).CrossRefGoogle Scholar
  52. 52.
    S. G. Peters, S. D. Golding, and K. Dowling, “Melange- and sediment-hosted gold-bearing quartz veins, Hodgkinson gold field, Queensland, Australia,” Econ. Geol. 85, 312–327 (1990).CrossRefGoogle Scholar
  53. 53.
    P. Piantone, X. Wu, and J.-C. Touray, “Zoned hydrothermal alteration and genesis of the gold deposit at Le Chatelet (French Massif Central),” Econ. Geol. 89, 757–777 (1994).CrossRefGoogle Scholar
  54. 54.
    O. Yu. Plotinskaya, E. O. Groznova, V. A. Kovalenker, K. A. Novoselov, and R. Seltmann, “Mineralogy and formation conditions of ores in the Bereznyakovskoe Ore Field, the Southern Urals, Russia,” Geol. Ore Deposits 51 (5), 371–397 (2009).CrossRefGoogle Scholar
  55. 55.
    S. V. Pribavkin, P. Montero, F. Bea, and G. B. Fershtater, “U–Pb age of the rocks and mineralization of the Berezovskoe gold deposit, Middle Urals,” Yearbook-2011, Tr. IGG UrO RAN 159, 211–217 (2012).Google Scholar
  56. 56.
    Prokofiev V. Yu. and V. B. Naumov, “Geochemical features of ore-forming solutions of the Zyryanovsk sulfide–base metal deposit, Rudny Altai,” Geokhmiya, No. 3, 375–386 (1987).Google Scholar
  57. 57.
    V. Yu. Prokofiev and N. B. Sanina, “Geochemistry of the mineralizing fluids at the Sarala gold deposit, Kuznetsk Alatau,” Geochem. Int., No. 12, 42–49 (1992).Google Scholar
  58. 58.
    Prokofiev V. Yu. and E. M. Spiridonov, Composition of metamorphic fluids and conditions of formation of ores of the Kochkar gold deposits (Urals), in Proceedings of 2nd All-Russian Petrographic Conference, Syktyvkar, Russia, 2000 (Geoprint, Syktyvkar, 2000), pp. 88–90 [in Russian].Google Scholar
  59. 59.
    V. Yu. Prokofiev, V. B. Naumov, O. F. Mironova, and N. T. Sokolova, “Study of fluid inclusions with high-density H2S,” Geokhimiya, No. 7, 948–953 (1990).Google Scholar
  60. 60.
    V. Yu. Prokofiev, N. E. Savva, A. V. Volkov, and A. A. Sidorov, “Peculiarities of Formation of the Devonian Au–Ag Epithermal Mineralization in Pipe Orebodies,” Dokl. Earth Sci. 443, 439–444 (2012).CrossRefGoogle Scholar
  61. 61.
    V. Yu. Prokofiev, V. B. Naumov, and O. F. Mironova, “Physicochemical parameters and geochemical features of fluids of Precamrbian gold deposits” Geochem. Int. 55 (12), 1047–1065 (2017).CrossRefGoogle Scholar
  62. 62.
    E. A. Razvozzhaeva, V. Yu. Prokofiev, A. M. Spiridonov, D. Kh. Martikhaev, and S. I. Prokopchuk, “Precious Metals and Carbonaceous Substance in Ores of the Sukhoi Log Deposit (Eastern Siberia, Russia),” Geol. Ore Deposits 44 (2), 103–110 (2002).Google Scholar
  63. 63.
    M. A. Ryabukha, N. A. Gibsher, A. A. Tomilenko, T. A. Bul’bak, M. O. Khomenko, and A. M. Sazonov, “PTX-parameters of metamorphogene and hydrothermal fluids, isotopy, and age of the Bogunai gold deposit, southern Yenisei ridge (Russia),” Russ. Geol. Geophys. 56 (6), 903–918 (2015).CrossRefGoogle Scholar
  64. 64.
    Yu. G. Safonov, A. V. Volkov, A. A. Wolfson, A. D. Genkin, T. L. Krylova, and A. V. Chugaev, “The Maisk quartz gold deposit (Northern Karelia): geological, mineralogical, and geochemical studies and some genetic problems,” Geol. Ore Deposits 45 (5), 429–451 (2003).Google Scholar
  65. 65.
    A. K. Sahoo, R. Krishnamurthi, R. Vadlamani, K. L. Pruseth, M. Narayanan, S. Varghese, and T. Pradeepkumar, “Genetic aspects of gold mineralization in the Southern Granulite Terrain, India,” Ore Geol. Rev. 72, 1243–1262 (2016).CrossRefGoogle Scholar
  66. 66.
    D. W. Schreiber, L. Fontbote, and D. Lochmann, “Geologic setting, paragenesis, and physicochemistry of gold quartz veins hosted by plutonic rocks in the Pataz region,” Econ. Geol. 85, 1328–1347 (1990).CrossRefGoogle Scholar
  67. 67.
    P. K. Seccombe and M. N. Hicks, “The Hill End goldfield, NSW, Australia—early metamorphic deposition of auriferous quartz veins,” Mineral. Petrol. 40, 257–273 (1989).CrossRefGoogle Scholar
  68. 68.
    P. Shen, Y. C. Shen, J. B. Wang, H. P. Zhu, L. J. Wang, and L. Meng, “Methane-rich fluid evolution of the Baogutu porphyry Cu–Mo–Au deposit, Xinjiang, NW China,” Chem. Geol. 275, 78–98 (2010).CrossRefGoogle Scholar
  69. 69.
    S. G. Soloviev, S. G. Kryazhev, and S. S. Dvurechenskaya, “Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee–Monto oxidized Au-(Cu) skarn and porphyry deposit, Polar Ural, Russia,” Mineral. Dep. 48, 603–627 (2013).CrossRefGoogle Scholar
  70. 70.
    O. G. Sorokhtin and S. A. Ushakov, Earth’s Evolution (MGU, Moscow, 2002) [in Russian].Google Scholar
  71. 71.
    E. M. Spiridonov and V. Yu. Prokofiev, “Geochemical features and conditions of formation of plutonogenic gold–telluride concentrations in the North Kazakhstan Caledonides,” Geol. Rudn. Mestorozhd. 31 (6), 26–39 (1989).Google Scholar
  72. 72.
    V. A. Sundarrajan, Z. L. Li, Y. Z. Hu, X. H. Fu, and Y. H. Zhu, “Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies,” Int. J. Earth Sci. 106, 1057–1073 (2017).CrossRefGoogle Scholar
  73. 73.
    J. F. H. Thompson, R. H. Sillitoe, T. Baker, J. R. Lang, and J. K. Mortensen, “Intrusion-related gold deposits associated with tungsten-tin provinces,” Mineral. Dep. 34, 323–334 (1999).CrossRefGoogle Scholar
  74. 74.
    J.-C. Touray, E. Marcoux, P. Hubert, and D. Proust, “Hydrothermal processes and ore-forming fluids in the Le Bourneix gold deposit, Central France,” Econ. Geol. 84, 1328–1339 (1989).CrossRefGoogle Scholar
  75. 75.
    T. Ulrich, S. D. Golding, B. S. Kamber, Zaw Khin, and A. Taube, “Different mineralization styles in a volcanic-hosted ore deposit: the fluid and isotopic signatures of the Mt Morgan Au–Cu deposit, Australia,” Ore Geol. Rev. 22, 61–90 (2002).CrossRefGoogle Scholar
  76. 76.
    J. Vallance, M.-L. Boiron, M. Cathelineau, S. Fourcade, M. Varlet, and C. Marignac, “The granite hosted gold deposit of Moulin de Cheni (Saint-Yrieix district, Massif Central, France): petrographic, structural, fluid inclusion and oxygen isotope constraints,” Mineral. Dep. 39, 265–281 (2004).CrossRefGoogle Scholar
  77. 77.
    A. V. Volkov, V. Yu. Prokof’ev, N. E. Savva, E. E. Kolova, and A. A. Sidorov, “Geochemical peculiarities of ore-forming fluid of the Paleozoic Au–Ag epithermal Ol’cha deposit (Northeastern Russia),” Dokl. Earth Sci. 450 (1), 499–503 (2013).CrossRefGoogle Scholar
  78. 78.
    B. A. Wake and G. R. Taylor, “Major’s Creek, N.S.W. Australia—a Devonian epithermal gold deposit,” Mineral. Dep. 23, 239–246 (1988).CrossRefGoogle Scholar
  79. 79.
    J. Xu, R. Ding, Y. Xie, Ch. Zhong, and L. Shan, “The source of hydrothermal fluids for the Sarekoubu gold deposit in the southern Altai, Xinjiang, China: Evidence from fluid inclusions and geochemistry,” J. Asian Earth Sci. 32, 247–258 (2008).CrossRefGoogle Scholar
  80. 80.
    Y. F. Xu, P. Ni, G. G. Wang, J. Y. Pan, S. J. Guan, H. Chen, J. Y. Ding, and L. Li, “Geology, fluid inclusion and stable isotope study of the Huangshan orogenic gold deposit: Implications for future exploration along the Jiangshan-Shaoxing fault zone, South China,” J. Geochem. Explor. 171, 37–54 (2016).CrossRefGoogle Scholar
  81. 81.
    F. Q. Yang, J. W. Mao, Y. T. Wang, and F. P. Bierlein, “Geology and geochemistry of the Bulong quartz-barite vein-type gold deposit in the Xinjiang Uygur Autonomous Region, China,” Ore Geol. Rev. 29, 52–76 (2006).CrossRefGoogle Scholar
  82. 82.
    F. Q. Yang, J. W. Mao, F. P. Bierlein, F. Pirajno, C. S. Zhao, H. S. Ye, and F. Liu, “A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China,” Ore Geol. Rev. 35, 217–234 (2009).CrossRefGoogle Scholar
  83. 83.
    J. Zacharias, B. Paterova, and Z. M. Pudilova, “Mineralogy, fluid inclusion, and stable isotope constraints on the genesis of the Roudn’y Au-Ag deposit, Bohemian Massif,” Econ. Geol. 104, 53–72 (2009).CrossRefGoogle Scholar
  84. 84.
    W. Zhai, X. M. Sun, W. D. Sun, L. W. Su, X. P. He, and Y. L. Wu, “Geology, geochemistry, and genesis of Axi: A Paleozoic low-sulfidation type epithermal gold deposit in Xinjiang, China,” Ore Geol. Rev. 36, 265–281 (2009).CrossRefGoogle Scholar
  85. 85.
    D. Q. Zhang, H. Q. She, C. Y. Feng, D. X. Li, and J. W. Li, “Geology, age, and fluid inclusions of the Tanjianshan gold deposit, western China: Two orogenies and two gold mineralizing events,” Ore Geol. Rev. 36, 250–263 (2009).CrossRefGoogle Scholar
  86. 86.
    T. Zhou, S. K. Dobos, and G. Dong, “Origin and fluid geochemistry of unconformity-related at the Black Ridge gold deposit, Clermont, Queensland,” Econ. Geol. 89, 1469–1491 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations