Geochemistry International

, Volume 56, Issue 12, pp 1148–1155 | Cite as

Viscosity of Depolymerized Dunite Melts under Medium and High Pressures

  • E. S. Persikov
  • P. G. Bukhtiyarov
  • A. G. Sokol


Some properties of depolymerized ultramafic (pyroxenite, peridotite, kimberlite, and dunite) melts under PT parameters of the upper mantle and crust are still known inadequately poorly. These properties are, first of all, the concentration, temperature, and pressure functions of the viscosity of these melts. This publication reports the first experimental–theoretical data on the temperature and pressure dependences of the viscosity of model dunite melts (degree of depolymerization 100NBO/T = 340) within broad ranges of temperature (1300–1950°C) and pressure 100 MPa to 7.5 GPa in comparison with such dependences for more strongly polymerized basalt melts (100NBO/T = 58). Our experimental data (accurate to ±30 relative %) on the viscosity of model dunite melts are compared with analogous calculated dependences of the viscosity of dunite melts obtained with a practically experimental error using a modified physicochemical model for predicting the viscosity of magmatic melts. The experimentally determined viscosity of extremely depolymerized dunite melts is very low at both medium and high pressures: 0.09–0.63 Pa s. The viscosity of model dunite melts is demonstrated to exponentially decrease with increasing temperature under medium (100 MPa) and high (up to 7.5 GPa) pressures and, conversely, exponentially increase with increasing pressure by approximately one order of magnitude as the pressure increases from 100 MPa to 7.5 GPa at a constant temperature. The pressure function of the viscosity of basalt melts has an minimum at ~5.5 GPa. Our first experimental data prove that the viscous flow activation energy of dunite melts linearly increases with increasing pressure. Based on analysis of newly obtained and preexisting literature data, we developed a generalized concentration dependence of the viscous flow activation energy of depolymerized ultramafic melts over the whole compositional range of melts from pyroxenite to dunite.


viscosity dunite basalt temperature pressure melt model mantle Earth’s crust 



The authors thank A.N. Nekrasov (Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences) for help with microprobe analysis of our samples. This study was financially supported by the Russian Foundation for Basic Research, project no. 15-05-01318, and partly by the Russian Science Foundation, project no. 14-27-00054.


  1. 1.
    M. Brearley, J. E. Dickinson, Jr., and M. Scarfe, “Pressure dependence of melt viscosities on the join diopside–albite,” Geochim. Cosmochim. Acta 30, 2563–2570 (1986).CrossRefGoogle Scholar
  2. 2.
    D. B. Dingwell, P. Copurtial, D. Giordano, and A. R. L. Nichols, “Viscosity of peridotite liquid,” Earth Planet. Sci. Lett. 226, 127–138 (2004).CrossRefGoogle Scholar
  3. 3.
    G. B. Flerov and V. A. Poletaev, “Petrology of the Kunchev dunite–clinopyroxenite gabbroic massif of Central Kamchatka,” Volcanol. Seismol., no. 3, 1–13 (2005).Google Scholar
  4. 4.
    Ya. I. Frenkel, Kinetic Theory of Liquids (AN SSSR, Moscow, 1975) [in Russian].Google Scholar
  5. 5.
    D. Ghosh and B. Karki, “Diffusion and viscosity of Mg2SiO4 liquid at high pressure from first-principles simulations,” Geochim. Cosmochim. Acta 75, 4591–4600 (2011). doi 10.1126/science.1188327CrossRefGoogle Scholar
  6. 6.
    O. K. Ivanov and S.V. Shtengelmeier, “Viscosity and crystallization temperature of ultramafic melts,” Geokhimiya, No. 3, 330–337 (1982).Google Scholar
  7. 7.
    O. K. Ivanov, Concentrically Zoned Pyroxenite–Dunite Massifs of the Urals (UrGU, Yekaterinburg, 1997) [in Russian].Google Scholar
  8. 8.
    B. B. Karki and L. P. Stixrude Viscosity of MgSiO3 at Earth’s mantle conditions: implications for an early magma ocean. Science 328, 740–742 (2010). http:// doi 10.1016/j.gca.2011.05.030CrossRefGoogle Scholar
  9. 9.
    R. W. Le Maitre, “The chemical variability of some common igneous rocks,” J. Petrol. 17 (4), 589–637 (1976).CrossRefGoogle Scholar
  10. 10.
    C. Liebske, B. Schmickler, H. Terasaki, B. T. Poe, A. Suzuki, K. I. Funakoshi, R. Ando, and D. C. Rubie, “The viscosity of peridotite liquid at pressures up to 13 GPa,” Earth Planet. Sci. Lett. 240, 589–604 (2005). doi 10.1016/j.gca.2011.05.030CrossRefGoogle Scholar
  11. 11.
    A. A. Marakushev, Petrogenesis (Nedra, Moscow, 1988) [in Russian].Google Scholar
  12. 12.
    B. O. Mysen, Structure and Properties of Silicate Melts (Elsevier, Amsterdam, 1988).Google Scholar
  13. 13.
    E. S. Persikov, “Viscosities of model and magmatic melts at the pressures and temperatures of the Earth’s crust and upper mantle,” Russ. Geol. Geophys. 39 (11), 1780–1792 (1998).Google Scholar
  14. 14.
    E. S. Persikov and P. G. Bukhtiyarov, “Unique gas high pressures apparatus to study fluid–melts and fluid–solid–melts interaction with any fluid composition at the temperature up to 1400°C and at the pressures up to 5 kbars,” J. Conf. Abs. 7 (1), 85 (2002).Google Scholar
  15. 15.
    E. S. Persikov and P. G. Bukhtiyarov, “Experimental study of the influence of lithostatic and water pressure on the viscosity of silicate and magmatic melts. New structural–chemical model of calculation and prediction of their viscosity,” Experimental Mineralogy, Some Results on the Turns of Centuries, Ed. by V. A. Zharikov and V. V. Fedkin, (Nauka, Moscow, 2004) [in Russian].Google Scholar
  16. 16.
    E. S. Persikov and P. G. Bukhtiyarov, “Interrelated structural chemical model to predict and calculate viscosity of magmatic melts and water diffusion in a wide range of compositions and T–P parameters of the Earth’s crust and upper mantle,” Russ. Geol. Geophys. 50 (12), 1079–1090 (2009).CrossRefGoogle Scholar
  17. 17.
    E. S. Persikov, V. A. Zharikov, P. G. Bukhtiyarov, and S. F. Pol’skoy “The effect of volatiles on the properties of magmatic melts,” Eur. J. Mineral. 2, 621–642 (1990).CrossRefGoogle Scholar
  18. 18.
    E. S. Persikov, P. G. Bukhtiyarov, and A. G. Sokol, “Viscosity of hydrous kimberlite and basaltic melts at high pressures,” Russ. Geol. Geophys. 58, 1093–1100 (2017a).CrossRefGoogle Scholar
  19. 19.
    E. S. Persikov, P. G. Bukhtiyarov, A. N. Nekrasov, and A. G. Sokol, “Interaction of orthopyroxenes with carbonates at the Earth’s crust and mantle conditions,” Abstr. Gold2017: abs:2017001255 (2017b).Google Scholar
  20. 20.
    E. S. Persikov, P. G. Bukhtiyarov, and A. G. Sokol, “Change in the viscosity of kimberlite and basaltic magmas during their origin and evolution (prediction),” Russ. Geol. Geophys. 56, 885–892 (2015).CrossRefGoogle Scholar
  21. 21.
    J. E. Reid, A. Suzuki, K. I. Funakoshi, H. Terasaki, B. T. Poe, D. C. Rubie, and E. Ohtani, “The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa,” Phys. Earth Planet. Int., 139, 45–54 (2003).CrossRefGoogle Scholar
  22. 22.
    A. G. Sokol and Y. N. Palyanov, “Diamond formation in the system MgO–SiO2–H2O–C at 7.5 GPa and 1600°C,” Contrib. Mineral. Petrol. 121, 33–43 (2008).Google Scholar
  23. 23.
    A. G. Sokol, I. N. Kupriyanov, and Y. N. Palyanov, “Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400°C: Implications for kimberlite formation,” Earth Planet. Sci. Lett. 383, 58–67 (2013).CrossRefGoogle Scholar
  24. 24.
    J. T. K. Wan, T. S. Duffy, S. Scandolo, and R. Car, “First-principle study of density, viscosity and diffusion coefficients of liquid MgSiO3 at conditions of the Earth’s deep mantle,” J. Geophys. Res. 112, 1–7 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of SciencesChernogolovkaRussia
  2. 2.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations