Geochemistry International

, Volume 56, Issue 12, pp 1209–1219 | Cite as

Nd and Sr Isotope Composition in the Tooth Enamel from Fe–Mn Nodules of the Cape Basin (Atlantic Ocean): Age and Sources

  • A. V. DubininEmail author
  • A. B. Kuznetsov
  • M. N. Rimskaya-Korsakova
  • T. Kh. Safin

Abstract—The Nd and Sr isotope compositions were determined for the first time in biogenic apatite sampled throughout the tooth section (from the base to tip) of predatory fish in the nucleus of Fe–Mn nodules from the Cape Basin. The results showed that diagenetic recrystallization of apatite does not affect the 87Sr/86Sr ratio in the tooth enamel, but leads to the decrease of Sr content. The age of tooth was determined using Sr isotope stratigraphy at 5.2 ± 0.2 Ma for sample 2188/4 and 6.6 ± 0.3 Ma for sample 2188/5. The calculated growth rate of Fe and Mn oxyhydroxide layers varies within 0.4–2.8 mm per 1 Ma. The 143Nd/144Nd ratio in the tooth enamel varies within single station and depends on the local Nd sources in pore water. The value of εNd varies from –5.2 to –6.9 in the enamel of tooth 2188/4 and remains constant at –8.7 ± 0.1 in sample 2188/5. A change of Nd isotope composition in sample 2188/4 likely reflects temporal variations of Nd fraction from bottom and pore waters that penetrated inside the enamel during REE diffusion. The value of εNd in the oxyhydroxide layers of Fe–Mn nodule 2188/4 (from –7.8 to –7.9) is homogenous for the external and internal parts of the tooth. In order to use εNd in apatite enamel and authigenic Fe and Mn oxyhydroxides in sediments for paleoreconstructions of thermohaline water circulation, it is necessary to develop additional criteria for selecting diagenetically unaltered matter.


Sr isotope stratigraphy Nd isotope composition of fish tooth Fe–Mn nodules Cape Basin 



This work was supported by the Russian Foundation for Basic Research (project no. 17-05-00339), while technique of purification of biogenic apatite was developed in the framework of the IO RAS State Assignment (theme no. 0149-2014-0037).


  1. 1.
    A. N. Abbott, B. A. Haley, and J. McManus, “The impact of sedimentary coatings on the diagenetic Nd flux,” Earth Planet Sci. Lett. 449, 217–227 (2016).CrossRefGoogle Scholar
  2. 2.
    L. A. Berkovitz, V. G. Obolyaninova, A. K. Parshin, and A. R. Romanovskaya, “A system of sediment reference samples,” Geostand. Newslett. 15 (1), 85–109 (1991).CrossRefGoogle Scholar
  3. 3.
    A. V. Dubinin, “Inductively coupled plasma mass-spectrometry. Determination of the rare-earth elements in standard samples of oceanic bottom sediments,” Geokhimiya, No. 11, 1605–1619 (1993).Google Scholar
  4. 4.
    A. V. Dubinin, “Geochemistry of rare earth elements in oceanic phillipsites,” Lithol. Miner. Resour. 35 (2), 101–108 (2000).CrossRefGoogle Scholar
  5. 5.
    T. Edvin and Y. Rundberg, “Post-Eocene strata of the southern Viking Graben, northern North Sea; Integrated biostratigraphic, strontium isotopic and lithostratigraphic study,” J. Norwegian Geology 87, 391–450 (2007).Google Scholar
  6. 6.
    H. Elderfield and R. Pagett, “Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment,” Sci. Total Environ. 49 (Spec. Issue), 175–197 (1986).CrossRefGoogle Scholar
  7. 7.
    K. Futa, Z. E. Peterman, and J. R. Hein, “Sr and Nd isotopic variations in ferromanganese crusts from the Central Pacific: Implications for age and source provenance,” Geochim. Cosmochim. Acta 52, 2229–2233 (1988).CrossRefGoogle Scholar
  8. 8.
    J. D. Gleason, T. C. Moore, D. K. Rea, T. M. Johnson, R. M. Owen, J. D. Blum, S. A. Hovan, and C. E. Jones, “Ichthyolith strontium isotope stratigraphy of a Neogene red clay sequence: calibrating eolian dust accumulation rates in the central North Pacific,” Earth Planet Sci. Lett. 202, 625–636 (2002).CrossRefGoogle Scholar
  9. 9.
    I. M. Gorokhov, N. N. Mel’nikov, A. B. Kuznetsov, G. V. Konstantinova, and T. L. Turchenko, “Sm–Nd systematics of fine-grained fractions of the lower Cambrian blue clay in Northern Estonia,” Lithol. Miner. Resour. 42 (5), 482–495 (2007).CrossRefGoogle Scholar
  10. 10.
    E. A. Gusev, A. B. Kuznetsov, E. E. Taldenkova, S. D. Nikolaev, A. Yu. Stepanova, and E. S. Novikhina, “Past sedimentation rates and environments of the Mendeleev Rise inferred from Sr isotope and δ18O chemostratigraphy of its Late Cenozoic sediments,” Dokl. Earth Sci. 473 (3), 354–358 (2017).CrossRefGoogle Scholar
  11. 11.
    C. Huh and T. Ku, “Radiochemical observations on manganese nodules from three sedimentary environments in the north Pacific,” Geochim. Cosmochim. Acta 48 (5), 951–963 (1984).CrossRefGoogle Scholar
  12. 12.
    B. L. Ingram, “High-resolution dating of deep-sea clays using Sr isotopes in fossil fish teeth,” Earth Planet Sci. Lett. 134, 545–555 (1995).CrossRefGoogle Scholar
  13. 13.
    S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd isotopic evolution of chondrites,” Earth Planet Sci. Lett. 50, 139–155 (1980).CrossRefGoogle Scholar
  14. 14.
    V. Klevenz, D. Vance, D. N. Schmidt, and K. Mezger, “Neodymium isotopes in benthic foraminifera: Core-top systematics and a down-core record from the Neogene south Atlantic,” Earth Planet Sci. Lett. 265, 571–587 (2008).CrossRefGoogle Scholar
  15. 15.
    M. J. Kohn M. J. Schoeninger, and W. W. Barker, “Altered states: effects of diagenesis on fossil tooth chemistry,” Geochim. Cosmochim. Acta 63 (18), 2737–2747 (1999).CrossRefGoogle Scholar
  16. 16.
    D. Koppenkastrop and E. H. DeCarlo, “Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach,” Chem. Geol. 95, 251–263 (1992).CrossRefGoogle Scholar
  17. 17.
    A. B. Kuznetsov, M. A. Semikhatov, and I. M. Gorokhov, “The Sr isotope composition of the world ocean, marginal and inland seas: implications for the Sr isotope stratigraphy,” Stratigraphy. Geol. Correlation 20 (6), 501–515 (2012).CrossRefGoogle Scholar
  18. 18.
    A. B. Kuznetsov, M. A. Semikhatov, and I. M. Gorokhov, “The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian) stratigraphy,” Geol. Correlation 22 (6), 553–575 (2014a).CrossRefGoogle Scholar
  19. 19.
    A. B. Kuznetsov, D. V. Zarkhidze, A. V. Krylov, and A. V. Maslov, “Strontium isotope stratigraphy of Late Cenozoic deposits in the Timan–Uralian region by mollusk shells: definition of the Eopleistocene age,” Dokl. Earth Sci. 458 (6), 687–691 (2014b).Google Scholar
  20. 20.
    A. B. Kuznetsov, M. A. Semikhatov, and I. M. Gorokhov, “Strontium isotope stratigraphy: principles and state of the art,” Stratigraphy. Geol. Correlation 26 (4), 367–386 (2018).CrossRefGoogle Scholar
  21. 21.
    F. Lacan, K. Tachikawa, and C. Jean del, “Neodymium isotopic composition of the ocean: a compilation of seawater data,” Chem. Geol. 300–301, 177–184 (2012).CrossRefGoogle Scholar
  22. 22.
    E. E. Martin and B. A. Haley, “Fossil fish teeth as proxies for seawater Sr and Nd isotopes,” Geochim. Cosmochim. Acta 64 (5), 835–847 (2000).CrossRefGoogle Scholar
  23. 23.
    E. E. Martin and H. D. Scher, “Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news,” Earth Planet Sci. Lett. 220, 25–39 (2004).CrossRefGoogle Scholar
  24. 24.
    J. M. McArthur, R. J. Howarth, and G. A. Shields, “Strontium isotope stratigraphy,” The Geologic Time Scale 2012, Ed. by F. M. Gradstein, J. G. Ogg, M. Schmitz, and G. Ogg, (Elsevier, Amsterdam, 2012), pp. 127–144.Google Scholar
  25. 25.
    S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” Rev. Mineral. 21, 169–200 (1989).Google Scholar
  26. 26.
    V. J. M. Salters and A. Sachi-Kocher, “An ancient metasomatic source for the Walvis Ridge basalts,” Chem. Geol. 273, 151–167 (2010).CrossRefGoogle Scholar
  27. 27.
    A. Shemesh, “Crystallinity and diagenesis of sedimentary apatites,” Geochem. Cosmochim Acta 54, 2433–2438 (1990).CrossRefGoogle Scholar
  28. 28.
    T. Stichel, M. Frank, J. Rickli, and B. A. Haley, “The hafnium and neodymium isotope composition of seawater in the Atlantic sector of the Southern Ocean,” Earth Planet. Sci. Lett. 317-318, 282–294 (2012).CrossRefGoogle Scholar
  29. 29.
    L. Stramma and M. England, “On the water masses and mean circulation of the South Atlantic Ocean,” J. Geophys. Res. 104 (C9), 20863–20883 (1999).CrossRefGoogle Scholar
  30. 30.
    D. J. Thomas and R. K. Via, “Neogene evolution of Atlantic thermohaline circulation: Perspective from Walvis Ridge, southeastern Atlantic Ocean,” Paleoceanography 22, PA2212 (2007). doi 10.1029/2006PA001297CrossRefGoogle Scholar
  31. 31.
    K. Toyoda and M. Tokonami, “Diffusion of rare earth elements in fish teeth from deep-sea sediments,” Nature 345, 607–609 (1990).CrossRefGoogle Scholar
  32. 32.
    N. V. Zarubina, M. G. Blokhin, P. E. Mikhailik, and A. S. Segrenev, “Determination of element composition of standard samples of ferromanganese sediments by inductively coupled plasma mass spectrometry,” Standartnye obraztsy, No. 3, 33–44 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Dubinin
    • 1
    Email author
  • A. B. Kuznetsov
    • 2
  • M. N. Rimskaya-Korsakova
    • 1
  • T. Kh. Safin
    • 1
  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations