Advertisement

Geochemistry International

, Volume 56, Issue 12, pp 1276–1288 | Cite as

Major and Trace Element Compositions of Hummocky Frozen Peatlands in the Forest–Tundra of Northeastern European Russia

  • R. S. VasilevichEmail author
Article
  • 30 Downloads

Abstract

The major and trace element compositions of stratified frozen peatlands in the forest–tundra of Northeastern European Russia were determined for the first time. The upper level of trace element accumulation was confined to the active (seasonally thawed) layer owing to airborne contamination over a long time span and related to the bioaccumulation of Hg, Cd, Pb, Cu, and other heavy metals (HMs) by plants and humus materials. The character of element accumulation and migration in the active layer is controlled by the stability of HM humates. Under high-acidity conditions, HMs are highly mobile and migrate to the lower boundary of the active layer, which is indicated by an increase in the fraction of water-soluble forms of a number of elements. Analysis with a scanning electron microscope revealed the presence of spherical and semispherical particles up to 1 μm in size containing Pb, Zn, Cr, and Ni in the upper peat levels, which indicates an anthropogenic source of their input owing to long-distance and local transport of air masses. The central level of element accumulation was confined to peat layers in the permafrost zone (60–120 cm), where enrichment in As and Cd relative to the mean contents in the Earth’s crust (and approximate permissible concentrations, APC, for soils) and accumulation of Fe, Al, S, and siderophile elements were observed. The source rocks of the peatlands are loams enriched in Cd, Zn, and As. The statistical analysis of relations of the contents of major and trace elements in the stratified peat horizons with the composition of peat-forming materials showed a significant contribution of the biogenic accumulation of elements.

Keywords:

cryolithozone peat heavy metals major elements geochemical barriers humic and fulvic acids peat forming systems 

Notes

ACKNOWLEDGMENTS

This study was financially supported by State Assignment Theme no. AAAA-A17-117122290011-5 and the Russian Foundation for Basic Research, project no. MOL-A 16-35-00218.

REFERENCES

  1. 1.
    V. A. Alekseenko, and L. P. Alekseenko, Geochemical Barriers (Logos, Moscow, 2003) [in Russian]. AMAP Assessment 2002: Heavy Metals in the Arctic. Arctic Monitoring and Assessment Programme (AMAP) (Oslo, 2002). Google Scholar
  2. 2.
    AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP) (Oslo, 2011). I. A. Avessalomova, Geochemical Indicators in Landscape Study (MGU, Moscow, 1987) [in Russian].Google Scholar
  3. 3.
    V. K. Bakhnov, Biogeochemical Aspects of the Wetland-Forming Process (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  4. 4.
    J. M. Benoit, W. F. Fitzgerald, and A. W. H. Damman, “The biogeochemistry of an ombrotrophic bog: evaluation of use as an archive of atmospheric mercury deposition,” Environ. Res. 78, 118–133 (1998).CrossRefGoogle Scholar
  5. 5.
    R. Bindler, “Mired in the past—looking to the future: geochemistry of peat and the analysis of past environmental changes,” Glob. Planet. Change 53, 209–221 (2006).CrossRefGoogle Scholar
  6. 6.
    V. A. Bobrov, A. A. Bogush, G. A. Leonova, V. A. Krasnobaev, and G. N. Anoshin, “Anomalous concentrations of zinc and copper in Highmoor peat bog, southeast coast of Lake Baikal,” Dokl. Earth Sci. 439 (2), 1152–1156 (2011).CrossRefGoogle Scholar
  7. 7.
    O. A. Chichagova, Radiocarbon Dating of Soil Humus. Method and Application in Soil Science and Paleogeography (Nauka, Moscow, 1985) [in Russian].Google Scholar
  8. 8.
    J. M. Cloy, J. G. Farmer, M. C. Graham, and A. B. MacKenzie, “Retention of As and Sb and ombrotrophic peat bogs: records of As, Sb and Pb deposition at four Scottish sites,” Environ. Sci. Technol. 43, 1756–1762 (2009).CrossRefGoogle Scholar
  9. 9.
    V. V. Doborovol’skii, Principles of Biogeochemistry (Akademiya, Moscow, 2003) [in Russian]. Google Scholar
  10. 10.
    L. I. Inisheva and T. N. Tsybukova, “Ecological–geochemical assessment of peats of the southeastern West Siberian Plain,” Geograf. Prir. Resurs., No. 1, 45–51 (1999).Google Scholar
  11. 11.
    K. E. Frey and L. C. Smith, “Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation,” Polar Res. 22 (2), 287–300 (2003).CrossRefGoogle Scholar
  12. 12.
    K. E. Frey, D. I. Siegel, and L. C. Smith, “Geochemistry of west Siberian streams and their potential response to permafrost degradation,” Water Resour. Res. 43, W03406 (2007). http://dx.doi.org/ doi 10.1029/ 2006WR004902CrossRefGoogle Scholar
  13. 13.
    D. N. Gabov, R. S. Vasilevich, E. V. Yakovleva, and O. M. Zueva, “Aromatic compounds in hilly peat bogs of the Cryolithozone,” Geoekol., Inzh. Geol., Gidroekol., Geokriol., No. 6, 15–29 (2017).Google Scholar
  14. 14.
    M. A. Glazovskaya, “Ability of the environment to self-purification,” Priroda, No. 3, 71–79 (1979).Google Scholar
  15. 15.
    A. D. Headley, “Heavy metal concentrations in peat profiles from the high Arctic,” Sci. Total Environ. 177, 105–111 (1996).CrossRefGoogle Scholar
  16. 16.
    A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, (CRC, Boca-Raton, 1984).Google Scholar
  17. 17.
    H. Kerndorff and M. Schnitzer, “Sorption of metals on humic acid,” Geochim. Cosmochim. Acta 44, 1701–1708 (1980).CrossRefGoogle Scholar
  18. 18.
    O. V. Kichigin, and O. A. Nosova, Tendencies in Complexation of Uranium (VI), Nickel(II), and Strontium(II) with Soil Humic Acids (Yumeks, Kursk, 2002) [in Russian].Google Scholar
  19. 19.
    K. P. Kutsenogii and P. K. Kutsenogii, “Aerosols of Siberia. Results of seven-year studies,” Sibirsk. Ekol. Zh., No. 1, 11–20 (2000).Google Scholar
  20. 20.
    N. S. Larina, S. I. Larin, and T. I. Moiseenko, “Geochemical differentiation in the stratigraphy of a peat bed as an indicator of its evolution in the Holocene,” Geochem. Int. 51 (2), 129–139 (2013). doi 10.7868/S0016752513020064CrossRefGoogle Scholar
  21. 21.
    D. M. Lawrence and A. G. Slater, “A projection of severe near-surface permafrost degradation during the 21st Century,” Geophys. Res. Lett. 32, L24401 (2005). http://dx.doi.org/ doi 10.1029/2005GL025080CrossRefGoogle Scholar
  22. 22.
    D. V. Moskovchenko, “Biogeochemical features of highmoors of West Siberia,” Geograf. Prir. Resurs., No. 1, 63–70 (2006).Google Scholar
  23. 23.
    P. M. Outridge and H. Sanei, ”Does organic matter degradation affect the reconstruction of pre-industrial atmospheric mercury deposition rates from peat cores?—A test of the hypothesis using a permafrost peat deposit in northern Canada,” Int. J. Coal Geology 83, 73–81 (2010).CrossRefGoogle Scholar
  24. 24.
    N. I. P’yavchenko and Z. A. Sibireva, “On the role of atmospheric dust in swamp feeding,” Dokl. Akad Nauk SSSR 124 (2), 414–417 (1959).Google Scholar
  25. 25.
    L. Poissant, H. H. Zhang, J. Canário, and P. Constant, “Critical review of mercury fates and contamination in the Arctic tundra ecosystem,” Sci. Total Environ. 400, 173–211 (2008).CrossRefGoogle Scholar
  26. 26.
    J. Routh, G. Hugelius, P. Kuhryb, T. Filley, P. K. Tillman, M. Becher, and P. Crill, “Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic,” Chem. Geol. 368, 104–117 (2014). doi 10.1016/j.chemgeo.2013.12.022CrossRefGoogle Scholar
  27. 27.
    E. A. Schuur, G. J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, and W. Shotyk, “Review of the inorganic geochemistry of peats and peatland waters,” Earth-Sci. Rev. 25 (2), 95–176 (1988).CrossRefGoogle Scholar
  28. 28.
    E. N. Sever’yanova, and V. N. Gorbachev, “Effect of closed mining of bituminous coal on the soil of the Bol’shaya Zemlya tundra by the example of the Komsomol’skaya mine, Vorkuta, Komi Republic,” Agrarn. Nauka Obrazov. na Sovremen. Etape Razvitiya: Opyt, Problemy, Puti Resheniya, No. 1, 58–64 (2012).Google Scholar
  29. 29.
    E. V. Shamrikova, D. A. Kaverin, A. V. Pastukhov, E. M. Lapteva, O. S. Kubik and V. V. Punegov, “Water-soluble organic acids in cryomorphic peat soils of the southeastern Bol’shezemel’skaya tundra,” Euras. Soil Sci. 48 (3), 250–256 (2015). doi 10.7868/S0032180X15030107Google Scholar
  30. 30.
    B. Smieja-Król, B. Fiałkiewicz-Kozieł, J. Sikorski, and B. Palowski, “Heavy metal behaviour in peat—A mineralogical perspective,” Sci. Total Environ. 408, 5924–5931 (2010). doi 10.1016/j.scitotenv.2010.08.032CrossRefGoogle Scholar
  31. 31.
    V. A. Stepanova and O. S. Pokrovsky, Major element composition of the convex highmoors of the middle taiga of West Siberia by the example of the Mukhrino wetland complex,” Vestn. Tomsk. Gos. Univ. 352, 211–214 (2011).Google Scholar
  32. 32.
    V. A. Stepanova, O. S. Pokrovsky, J. Viers, N. P. Mironycheva-Tokareva, N. P. Kosykh, and E. K. Vishnyakova, “Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and permafrost coverage,” Appl. Geochem. 53, 53–70 (2015).CrossRefGoogle Scholar
  33. 33.
    R. S. Swift, “Methods of soil analysis,” Soil Sci. Soc. Amer., No. 3, 1018–1020 (1996).Google Scholar
  34. 34.
    S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Sci. Publ., Oxford, 1985).Google Scholar
  35. 35.
    M. P. Tentyukov, “Peculiarities in the distribution of chemical elements in permafrost soils,” Kriosfera Zemli, 13 (3), 100–107 (2013).Google Scholar
  36. 36.
    I. Twardowska J. Kyzioł, T. Goldrath, and Y. Avnimelech, “Adsorption of zinc onto peat from peatlands of Poland and Israel,” Geochem. Explor. 66, 387–405 (1999).Google Scholar
  37. 37.
    M. I. Vasilevich, V. M. Shchanov, and R. S. Vasilevich, “Application of the satellite methods for the assessment of pollution of snow cover around industrial enterprises in the tundra zone,” Sovremen. Probl. Distants. Zond. Zemli iz Kosmosa, 12 (2), 50–60 (2015).Google Scholar
  38. 38.
    M. I. Vasilevich, R. S. Vasilevich, V. I. Mikhailov, and P. V. Krivoshapkin, “Assessment of properties of atmospheric suspensions in snow of background territories of the taiga zone of the European northeast of Russia,” Optika Atmosfery Okeana, No. 2, 184–190 (2017). doi 10.15372/AOO20170212Google Scholar
  39. 39.
    R. S. Vasilevich, Extended Abstract of Candidate’s Dissertation in Biology (Inst. Biol. Komi Nauchn Ts., Syktyvkar, 2013).Google Scholar
  40. 40.
    R. S. Vasilevich and V. A. Beznosikov, “Effect of climate changes in the Holocene on the distribution of humic substances in the profile of forest–tundra peat mounds,” Euras. Soil Sci. 50 (11), 1271–1282 (2017). doi 10.7868/S0032180X17090106Google Scholar
  41. 41.
    R. S. Vasilevich, V. A. Beznosikov, E. D. Lodygin, and B. M. Kondratenok, “Complexation of mercury(II) ions with humic acids in tundra soils,” Euras. Soil Sci. 47 (3), 162–172 (2014). doi 10.7868/S0032180X14030113Google Scholar
  42. 42.
    R. S. Vasilevich, D. N. Gabov, V. A. Beznosikov, I. V. Gruzdev, and E. D. Lodygin, “High- and low-molecular-weight organic compounds in tundra peat bog,” Teoret. Prikl. Ekologiya, No. 1, 53–61 (2015).Google Scholar
  43. 43.
    E. E. Veretennikova, “Content and distribution of chemical elements in peats of the south taiga subzone of West Siberia,” Geograf. Prir. Resurs., No. 2, 89–95 (2013).Google Scholar
  44. 44.
    Ya, E. Yudovich and M. P. Ketris, Toxic Trace Elements in Fossil Coals (UrO RAN, Yekaterinburg, 2005) [in Russian].Google Scholar
  45. 45.
    Ya. E. Yudovich and V. V. Zolotova, “Trace elements in the coals of the Pechora Basin,” Narodnoe Khozyaistvo Respibliki Komi, 3 (1), 16–26 (1994).Google Scholar
  46. 46.
    S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Permafrost and the global carbon budget,” Science 312 (5780), 1612–1613 (2006). doi 10.1126/science.1128908CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations