Advertisement

Geochemistry International

, Volume 56, Issue 10, pp 969–981 | Cite as

Living Matter of the Biosphere: Mass and Chemical Elemental Composition

  • V. V. Ermakov
  • Yu. V. Kovalsky
Article
  • 41 Downloads

Abstract—

The paper discusses V.I. Vernadsky’s concept of living matter of the biosphere. Living matter in the sense of all organisms of the biosphere considered collectively is heterogeneous, plastic, integral, organized, and facilitates the continuous movement of atoms of chemical elements, transforms energy, and forms and preserves corresponding environments. Living matter is characterized by a certain chemical elemental composition and mass and performs certain functions. Living matter is mosaic and ubiquitous. It is characterized by homeostasis due to biological diversity, multiple relations between individual organisms, and the unique ability of adaptation. The paper reports data on the mass of living matter, its differentiation, and chemical composition.

Keywords:

biosphere living matter organisms soils crust mass chemical elemental composition 

Notes

ACKNOWLEDGMENTS

The authors thank Acad. E.M. Galimov for valuable comments provided when the manuscript was prepared.

REFERENCES

  1. 1.
    A Human. Medical–Biological Data: A Report of Working Group of Com. 2 MKRZ on Conditional Human, Ser. 23 (Meditsina, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    G. M. Abdurakhmanov, D. A. Krivolutsky, E. G. Myalo, and G. N. Ogureeva, Biogeography. A Textbook for Students, 3rd Ed., (Akademiya, Moscow, 2008) [in Russian].Google Scholar
  3. 3.
    P. H. Abelson and T. V. Hoering, “Carbon isotope fractionation in formation of amino acids by photosynthetic organisms,” Proc. Nat. Acad. Sci. USA 47 (5), 623–632 (1961).CrossRefGoogle Scholar
  4. 4.
    G. P. Aksenov, “On Geocentrism of V.I. Vernadskii,” Vopr. Istorii Estestvoznaniya Tekhniki 38 (2), 246–247 (2017).Google Scholar
  5. 5.
    V. A. Alekseenko and A. V. Alekseenko, Chemical Elements in Geochemical Systems. Soil Clarkes of Settlement Landscapes (YuFU, Rostov on Don, 2013) [in Russian]. Google Scholar
  6. 6.
    A. P. Avtsyn, A. A. Zhavoronkov, M. A. Rish, and L. S. Strochkova, Microelementosis of Human (Meditisna, Moscow, 1991) [in Russian].Google Scholar
  7. 7.
    N. V. Baranovskaya, L. P. Rikhvanov, T. N. Ignatova, D. V. Narkovich, and O. A. Denisova, Essays on Human Geochemistry (Tomsk Politekhn. Uiv., Tomsk, 2015) [in Russian].Google Scholar
  8. 8.
    V. N. Bashkin, Biogeochemistry (Vysshaya Shkola, Moscow, 2008) [in Russian].Google Scholar
  9. 9.
    N. I. Bazilevich, “Biogeochemistrty of the Earth and functional models of exchange processes in natural ecosystems,” Tr. Biogeokhim. Lab. 17, 55–73 (1979)Google Scholar
  10. 10.
    M. Begon, J. L. Harper, and R. T. Colin, Ecology: Individuals, Populations, and Communities (Blackwell Scientific, Boston, 1990).Google Scholar
  11. 11.
    H. J. Bowen, M. Environmental Chemistry of the Elements (Acad. Press, New York, 1979).Google Scholar
  12. 12.
    H. Craig, “The geochemistry of the stable carbon isotopes,” Geochim. Cosmochim. Acta 3, 53–92 (1953).CrossRefGoogle Scholar
  13. 13.
    L. Sh. Davitashvili, Evolution of Conditions of Fossil Fuels in Relation with Evolution of the Organic World (Nauka, Moscow, 1981) [in Russian]Google Scholar
  14. 14.
    L. L. Demina and S. V. Galkin, Biogeochemistry of Trace Elements in Deep-Water Hydrothermal Ecosystems (GEOS, Moscow, 2013) [in Russian].Google Scholar
  15. 15.
    A. M. Durso, Stable Isotopes and the Ecology and Physiology of Reptiles, All Ga Diate Thesis and Dissertations, Paper 5064 (Utah State University, Logan, 2016).Google Scholar
  16. 16.
    J. R. Ehleringer, and C. B. Osmond, Stable isotopes. Plant Physiological Ecology: Field Methods & Instrumentation, Ed. by R. W. Pearcy, J. Ehleringer, H. A. Mooney, and P. W. Rundel (Chapman & Hall Ltd., New York, 1989), pp. 281–300.Google Scholar
  17. 17.
    B. J. Enquist and K. J. Niklas, “Global allocation rules for patterns of biomass partitioning in seed plants,” Science 295 (5559), 1517–1520 (2002).CrossRefGoogle Scholar
  18. 18.
    Environmental Encyclopedia, Ed. by Glenn Elert (Gale Research, Detroit, 1994) Michigan: 95 p.Google Scholar
  19. 19.
    O. Z. Eremchenko, Theory on Biosphere. Organization of Biosphere and Biogeochemical Cycles. A Textbook (Perm. Gos. Univ., Perm, 2010) [in Russian].Google Scholar
  20. 20.
    V. V. Ermakov and S. F. Tyutikov, Geochemical Ecology of Animals (Nauka, Moscow, 2008) [in Russian].Google Scholar
  21. 21.
    V. V. Ermakov, S. F. Tyutikov, and V. A. Safonov, Biogeochemical Indication of Microelemnthoses (M.: Publ. RAS, 2018) [in Russian].Google Scholar
  22. 22.
    B. G. Fedorov, Russian Carbon Balance (Nauchnyi Konsul’tant, Moscow, 2017) [in Russian].Google Scholar
  23. 23.
    C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. Falkowski, “Primary production of the biosphere: integrating terrestrial and oceanic components,” Science 281 (5374), 237–240 (1998).CrossRefGoogle Scholar
  24. 24.
    I. V. Florinsky, Man and the Geosphere (Nova Science Publishers, New York, 2010).Google Scholar
  25. 25.
    E. Galimov, “Role of low solar luminosity in the history of the biosphere,” Geochem. Int. 55 (5), 401–417 (2017).CrossRefGoogle Scholar
  26. 26.
    E. M. Galimov, “Carbon geochemistry,” Priroda, No. 3, 3–13 (1993).Google Scholar
  27. 27.
    E. M. Galimov, Nature of Biological Isotope Fractionation (Moscow, Nauka, 1981) [in Russian].Google Scholar
  28. 28.
    A. S. Isaev, G. N. Korovin, and D. G. Zamolodchikov, “Contribution of Russian forests in the world carbon balance and tasks of forest branch after ratification of the Kyoto protocol,” Ustoch. Lesopol’zovanie 4 (6), 16–20 (2004).Google Scholar
  29. 29.
    A. S. Isaev, G. N. Korovin, and V. I. Sukhikh, Ecological Problems of CO2 Absorption by Forest Recovery and Cultivation in Russia (RASKhN, Moscow, 1995) [in Russian].Google Scholar
  30. 30.
    A. Kabata-Pendias and H. Pendias, Biogeochemia Pierwlastkov Sladowych (Wydawnictwo Naukowe PWN, Warzsawa, 1999).Google Scholar
  31. 31.
    K. I. Kobak, Biotic Components of Hydrocarbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  32. 32.
    L. A. Kodina, “Carbon isotope fractionation in various forms of biogenic organic matter: I. Partitioning of carbon isotopes between the main polymers of higher plant biomass,” Geochem. Int. 48 (12), 1235–1244 (2010).CrossRefGoogle Scholar
  33. 33.
    V. D. Korzh, Biosphere. Formation of Element Compositions of Hydrosphere and Lithosphere (Verlag, Lambert AP, 2017).Google Scholar
  34. 34.
    V. V. Kovalsky, Geochemical Ecology (Nauka, Moscow, 1974) [in Russian].Google Scholar
  35. 35.
    V. A. Krivitsky, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (MGU, Moscow, 1988).Google Scholar
  36. 36.
    A. I. Kurbatova and A. M. Tarko, “Modeling of the global biogeochemical cycle of carbon and nitrogen in the “atmosphere–plant–soil” system”,” Vestn. RUDN, Ser. Ekol. Bezopasn, Zhiznedeyat., No. 3, 40–47 (2012).Google Scholar
  37. 37.
    A. Yu. Lein, L. I. Moskalev, Yu. A. bogdanov, and A. M. Sagalevich, “Oceanic hydrothermal systems and life,” Priroda, No. 5, 47–55 (2000).Google Scholar
  38. 38.
    N. V. Lukina, and V. V. Nikonov, Biogeochemical Cycles in Northern Forests under Conditions of Aerotechnogenic Pollution (Kol’sk, Nauchn. Ts., Apatity, 1996) [in Russian].Google Scholar
  39. 39.
    N. V. Malysheva, B. N. Moiseev, A. N. Filipchuk, and T. A. Zolina, “Methods of assessment of carbon balance in forest ecosystems and opportunities of their application for calculation of annual deposition,” Lesnoi Vestn. 21 (1), 4–13 (2017).Google Scholar
  40. 40.
    B. Markert, S. Fränzle, and S. Wünschmann Chemical Evolution: The Biological System of the Elements (Springer International Publishing, 2015).CrossRefGoogle Scholar
  41. 41.
    A. Meier-Abich, The Historical-Physiological Background of the Modern Evolution Biology (Leiden, 1964).Google Scholar
  42. 42.
    T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).CrossRefGoogle Scholar
  43. 43.
    C. Mora, D. P. Tittensor, S. Adl, A. G. B. Simpson, and B. Worm, “How many species are there on Earth and in the Ocean?,” PLoS Biol 9 (8), e1001127 (2011). https:// doi.org/10.1371/journal.pbio.1001127CrossRefGoogle Scholar
  44. 44.
    A. O. Nier and E. A. Gulbransen, “Variations in the relative abundance of the carbon isotopes,” J. Am. Chem. Soc. 61, 697–698 (1939).CrossRefGoogle Scholar
  45. 45.
    S. A. Ostroumov, “New aspects of organisms and detritus in detoxicant system of biosphere,” Ekol. Khimiya 26 (3), 164–173 (2017).Google Scholar
  46. 46.
    A. D. Pokarzhevsky, Geochemical Ecology of Terrestrial Animals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  47. 47.
    A. Poldervart “Chemistry of the Earth’s crust,” Crust of the Earth. Spec. Paper GeoL Soc. Amer. Baltimore 62, 19–144 (1955).Google Scholar
  48. 48.
    V. M. Puzakov, and I. K. Zakharov, “Diversity and distribution of mobile genetic elements in genomes of marine inverterbrates,” Vavilov. Zh. Genet. Selektsii 21 (2), 269–283 (2017).Google Scholar
  49. 49.
    L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle of Sol Elements and Nitrogen in the Main Types of Plants (Nauka, Moscow, 1965) [in Russian].Google Scholar
  50. 50.
    E. A. Romankevich and A. A. Vetrov, Carbon Cycle in the Russian Arcctic Seas (Nauka, Moscow, 2001) [in Russian].Google Scholar
  51. 51.
    E. A. Romankevich, “Living matter of the Earth (biogeochemical aspects of the problem),” Geokhimiya, No. 2, 292–306 (1988).Google Scholar
  52. 52.
    A. B. Ronov, “General tendencies in the composition evolution of crust, ocean, and atmosphere,” Geokhimiya, no. 8, 715–743 (1964).Google Scholar
  53. 53.
    G. S. Roszenberg, E. G. Kolomyts, and L. S. Sharyya, “Carbon balance of forest ecosystems under conditions of forthcoming global warming,” Geography of Productivity and Biogeochemical Cycle of Terrestrial landscapes: on 100 th Anniversary of Prof. N. I. Bazilevich, Ed. by G. V. Dobrovol’skii (Inst. Geograf. RAN, Moscow, 2010), pp. 126–139.Google Scholar
  54. 54.
    V. A. Rozhkov and A. Z. Shvidenko, “First digital maps of phytomass, motrmass, and annual production,” Geography of Productivity and Biogeochemical Cycle of Terrestrial landscapes: on 100 th Anniversary of Prof. N. I. Bazilevich, Ed. by G. V. Dobrovol’skii (Inst. Geograf. RAN, Moscow, 2010), pp. 114–125.Google Scholar
  55. 55.
    G. N. Saenko, Metals and Halogens in Marine Organisms (Nauka, Moscow, 1992) [in Russian].Google Scholar
  56. 56.
    N. M. Strakhov, Development of Lithogenetic Ideas in Russia and USSR (Nauka, Moscow, 1971) [in Russian].Google Scholar
  57. 57.
    A. A. Tishkov, Biospheric Functions of Natural Ecosystems of Russia (Nauka, Moscow, 2005) [in Russian].Google Scholar
  58. 58.
    A. A. Titlyanova, “Productivity of grassy ecosystems of the world,” Geography of Productivity and Biogeochemical Cycle of Terrestrial landscapes: on 100 th Anniversary of Prof. N. I. Bazilevich, Ed. by G. V. Dobrovol’skii (Inst. Geograf. RAN, Moscow, 2010), pp. 144–153.Google Scholar
  59. 59.
    S. F. Tyutikov, “Biogeochemical indication: Current state and development outlooks,” Geochem. Int. 55 (10), 902–910 (2017).CrossRefGoogle Scholar
  60. 60.
    V. A. Uspensky, Carbon Balance in the Biosphere in Relation with Problem of Carbon Distribution in the Earth’s Crust (Gostoptekhizdat, Leningrad, 1956) [in Russian].Google Scholar
  61. 61.
    E. A. Vaganov, S. V. Verkhovets, A. V. Panov, N. N. Koshurnikova, A. A. Knorre, and N. V. Ekimova, Selected Papers of Forest Ecology: Biogeochemical Cycles in Ecosystems (SFU, Krasnoyarsk, 2007) [in Russian].Google Scholar
  62. 62.
    S. Vassilev, D. Baxter, L. K. Andersen and C. G. Vassileva, “An overview of the chemical composition of biomass,” Fuel 89(5), 913–933 (2010).CrossRefGoogle Scholar
  63. 63.
    N. B. Vassoevich, “Main regularities characterizing organic matter of modern and fossilized sediments,” in Nature of Organic Matter of Modern And Fossilized Sediments, Ed. by N. B. Vassoevich (Nauka, Moscow, 1973), pp. 11–60 [in Russian].Google Scholar
  64. 64.
    A. L. Vereshchaka, Sea Biology (Nauchnyi Mir, Moscow, 2003) [in Russian].Google Scholar
  65. 65.
    V. I. Vernadsky, “Living matter in the Earth Crust,” Archive of RAN, 518 (1), pp. 29–30. (1916–1919)Google Scholar
  66. 66.
    V. I. Vernadsky, “Evolution of species and living matter,” Priroda, No. 3, 227–250 (1928).Google Scholar
  67. 67.
    V. I. Vernadsky, “Reproduction of organisms and its significance in the biosphere structure,” V.I. Vernadskii. Biogeochemical Essays. 1922–1932. (AN SSSR, Moscow–Leningrad, 1940a), pp. 59–83 [in Russian].Google Scholar
  68. 68.
    V. I. Vernadsky, General considerations on study of chemical composition of living organisms,” in V.I. Vernadskii. Biogeochemical Essays. 1922–1932. (AN SSSR, Moscow–Leningrad, 1940b), pp. 147–166 [in Russian].Google Scholar
  69. 69.
    V. I. Vernadsky, “Chemical composition of living matter in relation with chemistry of the Earth’s crust,” V.I. Vernadskii. Biogeochemical Essays. (AN SSSR, Moscow–Leningrad, 1940c), pp. 9–25 [in Russian].Google Scholar
  70. 70.
    V. I. Vernadsky, Living Matter (Nauka, Moscow, 1978) [in Russian].Google Scholar
  71. 71.
    V. I. Vernadsky, Living Matter in Biosphere, Ed. by A. L. Yanshin (Nauka, Moscow, 1994) [in Russian].Google Scholar
  72. 72.
    A. P. Vinogradov, “Chemical elementary composition of marine organisms,” Tr. Biogeokhim. Lab. 6, (1944).Google Scholar
  73. 73.
    A. P. Vinogradov, “How old is ocean?” Priroda, No. 12, 50–57 (1975).Google Scholar
  74. 74.
    A. P. Vinogradov, “Oxygen isotopes and photosynthesis,” in Selected Papers. Isotope Geochemistry and Problems of Biogeochemistry (Nauka, Moscow, 1993), pp. 77–97 [in Russia].Google Scholar
  75. 75.
    P. A. Vodop’yanov, Stability and Dynamics of Biosphere (Nauka Tekhnika, Minsk, 1981) [in Russian].Google Scholar
  76. 76.
    A. I. Voinar, Biological Role of Trace Elements in Organism of Animals and Human (Vysshaya Shkola, Moscow, 1960) [in Russian].Google Scholar
  77. 77.
    G. V. Voitkevich, and V. A. Vronskii, Principles of Biosphere Theory (Feniks, Rostov on Don, 1996) [in Russian].Google Scholar
  78. 78.
    W. B. Whitman, D. C. Coleman, and W. J. Wiebe, “Prokaryotes: The unseen majority,” Proc. Natl. Acad. Sci. USA 95, 6578–6583 (1998).CrossRefGoogle Scholar
  79. 79.
    R. H. Whittaker (1975) Communities and Ecosystems / 2nd ad. N.Y.; London: MacMillan Publ. Co., Inc., 387 p.Google Scholar
  80. 80.
    G. M. Woodwell, R. H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, D.B. Botkin (1978) The biota and the word carbon budget. Science 199(4325), 141-146.CrossRefGoogle Scholar
  81. 81.
    F. T. Yanshina, Evolution of Viewpoints of V.I. Vernadskii on Biosphere and Development of the Noosphere Theory (Nauka, Moscow, 1996) [in Russian].Google Scholar
  82. 82.
    A. A. Yaroshevsky, Problems of Modern Geochemistry (Novosibirsk. Gos. Univ., Novosibirsk, 2004) [in Russian].Google Scholar
  83. 83.
    V. E. Zakrutkin, “On relative amount of living matter at different stages of the biosphere evolution,” Zhivye Biokosnye Sistemy, No. 2, (2013). http://www.jbks.ru/ archive/issue-2/article-3.Google Scholar
  84. 84.
    G. A. Zavarzin, Lecture on the Natural History of Microbiology (Nauka, Moscow, 2004) [in Russian].Google Scholar
  85. 85.
    L. A. Zenkevich, Z. N. Filatova, G. M. Belyaev, T. S. Luk’yanova, and I. A. Suetova, “Quantitative distribution of zoobenthos in the World Ocean,” Byull. Mosk. O-va Ispyt, Prir., Otd. Biol. 76 (3), 27–34 (1971).Google Scholar
  86. 86.
    V. B. Zhivetin, Biospheric Risks (IITs Bon Antsa, Izhevsk, 2008) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia

Personalised recommendations