Advertisement

Geochemistry International

, Volume 56, Issue 10, pp 1036–1045 | Cite as

Geochemical Specifics of the Distribution of Elements between Their Forms in Lakes in the European Part of Russia and Western Siberia

  • M. I. Dinu
Article
  • 12 Downloads

Abstract—

The paper analyzes currently applied methodological approaches to evaluating the speciation of metals in natural waters and presents literature data and original author’s experimental results on the forms of metals in natural waters in various natural–climatic zones in Russia and other countries. Data are presented on the geochemical specifics of the distribution of metals between their forms in lakes in the European part of Russia and western Siberia.

Keywords:

lacustrine waters physical and chemical differentiation equilibrium concentrations of metals 

Notes

ACKNOWLEDGMENTS

This study was financially supported by the Russian Science Foundation, Grant 18-17-00184.

REFERENCES

  1. 1.
    Yu. V. Alekhin, S. M. Ilina, S. A. Lapitskiy, and M. V. Sitnikova, “Results of a study of co-migration of trace elements and organic matter in a river flow in a boreal zone,” Moscow Univ. Geol. Bull., 65 (6), 380–386 (2010)CrossRefGoogle Scholar
  2. 2.
    L. L. Demina, Migration Species of Heavy Metals in Ocean (Nauka, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    M. I. Dinu, Influence of Functional Features of Humic matters on the Metal Speciation in Natural Waters (TyumGU, Tyumen, 2012) [in Russian].Google Scholar
  4. 4.
    S. Donald, M. Gamble, H. Schnitzer, and C. H. Kerndorff, “Langford Multiple metal ion exchange equilibria with humic acid,” Geochim. Cosmochim. Acta 47 (7), 1311–1323 (1983)CrossRefGoogle Scholar
  5. 5.
    D. Dudare and M. Klavins, “The interaction between humic substances and metals, depending on structure and properties of humic sustances,” in 4 th International Conference on Environ., Energy and Biotechnology 85, 10–15 (2000).Google Scholar
  6. 6.
    T. G. Dzherayan, A. G. Zavarzina, T. V. Danilova, and V. M. Shkinev, “Multistep flow-membrane filtration, gel-permeation chromatography, and spectrophotometric determination of polydisperse compounds,” J. Analyt.Chem. 63 (9), 844–847 (2008).CrossRefGoogle Scholar
  7. 7.
    J. H. Ephrai and B. Allard, Metal Ion Binding by Humic Substances in Modelling in Aquatic Chemistry (World, New York, 1997).Google Scholar
  8. 8.
    C. D. Evans and D. T. Monteith, Water Chemistry Discussion. UK Acid Waters Monitoring Network: 10 Year Report (ENSIS Publishing, London, 2000)Google Scholar
  9. 9.
    Yu. A. Izrael, and I. M. Nazarov, Acid Rains (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  10. 10.
    P. N. Linnik and B. I. Nabivanets, Species of Metal Migration in Fresh Surface Waters (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  11. 11.
    T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, Acidification of Waters: Sensitivity and Critical Loads (URSS, Moscow, 2017) [in Russian].Google Scholar
  12. 12.
    T. I. Nifanteva, P. Burba, O. Fedorova, V. M. Shkinev, and B. Yu. Spivakov, “Ultafiltration and determination of Zn and Cu-humic substances complexes stability constant,” Talanta 53, 1127–1131 (2001).CrossRefGoogle Scholar
  13. 13.
    T. I. Nifanteva, V. M. Shkinev, B. Spivakov, and P. Yu Burba, “Membrane filtration studies of aquatic humic substances and their metal species: a concise overview,” Talanta 48, 257–267 (1999).CrossRefGoogle Scholar
  14. 14.
    D. S. Orlov, Soil Chemistry (MGU, Moscow, 1992) [in Russian].Google Scholar
  15. 15.
    A. I. Perelman, Geochemistry of Natural Waters (MGU, Moscow, 1983) [in Russian].Google Scholar
  16. 16.
    I. V. Rodyushkin, Extended Abstract of Candidate’s Dissertation in Geography (St. Petersburg, 1995)Google Scholar
  17. 17.
    B. N. Ryzhenko, and E. S. Sidkina, “Water–granite” system: time of formation of fresh water composition,” Izv. Tomsk. Politekhn. Univ., 328 (4), 108–115 (2017).Google Scholar
  18. 18.
    B. Y. Saito, S. Nagasaki, S. Tanaka, and L. K. Koopal, “Application of the NICA-Donnan model for proton, copper and uranyl binding to humic acid,” Radiochim. Acta 92, 567–574 (2004).CrossRefGoogle Scholar
  19. 19.
    A. R. Schneider, M. Ponthieu, B. Cances, A. Conreux, X. Morvan, M. Gommeaux, B. Marin, and M. E. Benedetti, “Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution. A modelling approach,” Environ. Pollut. 213, 618–627 (2016).CrossRefGoogle Scholar
  20. 20.
    F. J. Stevenson, Humus Chemistry. Genesis, Composition, Reactions, 2nd Ed., (John Wiley & Sons, Inc., New York, 1994).Google Scholar
  21. 21.
    G. M. Varshal, T. K. Velyukhanova, and I. Ya. Koshcheeva, “Geochemical role of humic acids in element migration,” in Humic Matter in Biosphere (Nauka, Moscow, 1993), pp. 97–117.Google Scholar
  22. 22.
    E. V. Vasyukova, O. S. Pokrovsky, J. Viers, P. Oliva, B. Dupre, F. Martin, and F. Candaudap, “Trace elements in organic- and iron-rich surficial fluids of the boreal zone: assessing colloidal forms via dialysis and ultrafiltration,” Geochim. Cosmochim. Acta 74, 449–468 (2010).CrossRefGoogle Scholar
  23. 23.
    R. Vinodh, R. Padmavathi, and D. Sangeetha, “Separation of heavy metals from water samples using anion exchange polymers by adsorbtion process,” Desalination 267, 267–276 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of SciencesMoscowRussia

Personalised recommendations