Advertisement

Geochemistry International

, Volume 56, Issue 9, pp 881–900 | Cite as

Interaction of Kimberlite Magma with Diamonds Upon Uplift from the Upper Mantle to the Earth’s Crust

  • Yu. A. LitvinEmail author
  • A. V. Kuzyura
  • D. A. Varlamov
  • A. V. Bovkun
  • A. V. Spivak
  • V. K. Garanin
Article

Abstract

Interaction between a melt of kimberlite from the Nyurbinskaya pipe (Yakutia) and natural monocrystalline diamonds was studied experimentally at 0.15 GPa and 1200–1250°C in high-pressure and high-temperature Ar gas “bombs.” The loss of diamond weight with slight surface dissolution of diamonds in a Ca carbonate-bearing kimberlite melt over the course of 2 h (the period of kimberlite transport from upper-mantle diamond-forming chambers to the crustal cumulative centers) is 3–4.5%. In 4 and 7–8 days (under the conditions of crustal cumulative centers), the weight of diamond decreases with remarkable bulk dissolution by 13.5 and 24.5–27.5%, respectively. In the run at 0.15 GPa and 1200°C kimberlite and ilmenite (added) melts interact to produce perovskite melt. Both of the melts, rich in titanium minerals, are immiscible with kimberlite melt and therefore cannot influence the diamond dissolution kinetics in the kimberlite melt. The experimental results suggest that precisely the dissolution processes for thermodynamically metastable diamonds in silicate–carbonate kimberlitic magmas are responsible for the effective decrease in the diamond potential of kimberlite deposits. The paper discusses the physicochemical reasons for the decrease in the kimberlite diamond potential during the chemically active history of diamond genesis: from upper-mantle chambers to the explosive release of diamonds and kimberlite material from cumulative centers to the Earth’s surface. The data on experimental physicochemical studies of the origin, analytical mineralogy of inclusions, and isotope geochemistry of diamonds are correlated.

Keywords:

diamond genesis diamond potential of kimberlites stable carbon isotopes dissolution of diamond in kimberlite magmas mantle–crust transport cumulative centers experiment Ar gas ‘bomb’ high pressures and temperatures 

Notes

ACKNOWLEDGMENTS

This study was supported by the Presidium of the Russian Academy of Sciences (program I.8P “Physics of Condensed Media and New-Generation Materials,” by the Foundation of the President of the Russian Federation (grant MD-3464.2017.5 for Young Doctors of Sciences) and by the Russian Foundation for Basic Research (project no. 16-05-00850).

REFERENCES

  1. 1.
    G. Brey, L. N. Kogarko, and I. D. Ryabchikov, “Carbon dioxide in kimberlitic melts,” Neue Jahrb. Mineral. Mh. No. 4, 159–168 (1991).Google Scholar
  2. 2.
    F. P. Bundy, W. A. Basset, M. S. Weathers, R. J. Hemley, H. K. Mao, and A. F. Goncharov, “The pressure-temperature phase and transformation diagram for carbon; updated through 1994,” Carbon 34 (2), 141–153 (1996).CrossRefGoogle Scholar
  3. 3.
    P. Cartigny, “Stable isotopes and the origin of diamond,” Elements 1 (2), 79–84 (2005).CrossRefGoogle Scholar
  4. 4.
    C. R. Clement, “The emplacement of some diatreme-facies kimberlites,” Phys. Chem. Earth 9, 51–59 (1975).CrossRefGoogle Scholar
  5. 5.
    H. Cloos, “Bau und tatigkeit von tuffschloten. Untersuchgen an den Schwabischen vulkanen,” Geol. Rundsch. 32, 709–800 (1941).CrossRefGoogle Scholar
  6. 6.
    C. F. Davidson, “On diamondiferous diatremes,” Econ. Geol. 59, 1368–1380 (1964).CrossRefGoogle Scholar
  7. 7.
    J. B. Dawson and J. B. Hawthorne, “Magmatic sedimentation and carbonatitic differentiation in kimberlite sill at Benfontein, South Africa,” J. Geol. Soc. London 129, 61–85 (1973).CrossRefGoogle Scholar
  8. 8.
    J. B. Dawson, Kimberlites and Their Xenoliths (Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
  9. 9.
    E. M. Galimov, “The relation between formation conditions and variations in isotope composition of diamond,” Geochem. Int. 22 (1), 118–141 (1985).Google Scholar
  10. 10.
    E. M. Galimov, “Isotope fractionation related to kimberlite magmatism and diamond formation,” Geochim. Cosmochim. Acta 55, 1697–1708 (1991).CrossRefGoogle Scholar
  11. 11.
    E. M. Galimov, F.V. Kaminsky, K. A. Mal’tsev, N. V. Sobolev, and A. I. Botkunov, “The relation between δ13C and mineral–inclusion assemblages in diamonds from paired kimberlite pipes,” Geochem. Int. 26 (12), 134–137 (1989).Google Scholar
  12. 12.
    E. M. Galimov, N. V. Sobolev, E. S. Yefimova, E. I. Shemanina, and K. A. Maltsev, “Carbon isotopic composition of diamonds with mineral inclusions from placers of Northern Ural,” Geochem. Int. 26 (9), 1363-1370 (1989).Google Scholar
  13. 13.
    A. J. Irving and P. J. Wyllie, “Melting relations in CaO–CO2 and MgO–CO2 to 36 kilobars with comments on CO2 in the mantle,” Earth Planet. Sci. Lett. 20, 220–225 (1973).CrossRefGoogle Scholar
  14. 14.
    A. J. Irving and P.J. Wyllie, “Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb,” Geochim. Cosmochim. Acta 39, 35–53 (1975).CrossRefGoogle Scholar
  15. 15.
    K. Ito, T. Matsumoto, and N. Kawai, “Experimental study of kimberlite at pressures between 42 and 88 kilobars,” J. Geosci. Osaka City University 11 (1), 1–12 (1968).Google Scholar
  16. 16.
    F. V. Kaminsky, G. K. Khachatryan, and P. Andreazza, “Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil,” Lithos 114 (1–2), 16–29 (2009).CrossRefGoogle Scholar
  17. 17.
    C. S. Kennedy and G. C. Kennedy, “The equilibrium boundary between graphite and diamond,” J. Geophys. Res. 81, 2467–2470 (1976).CrossRefGoogle Scholar
  18. 18.
    G. C. Kennedy, and B. E. Nordlie, “The genesis of diamond deposits,” Econ. Geol. 63, 495–503 (1968).CrossRefGoogle Scholar
  19. 19.
    A. D. Khar’kiv, “Phenomena of high-temperature metamorphism related to kimberlite magma,” Geol. Geofiz., No. 6, 124–126 (1967).Google Scholar
  20. 20.
    S. I. Kostrovitsky, Z. V. Spetsius, D. A. Yakovlev, G. S. Fon der-Flaas, L. F. Suvorova, and I. N. Bogush, Atlas of the Bedrock Diamond Deposits of the Yakutsk Kimberlite Province (NIGP AK ALROSA, Mirny, 2015) [in Russian].Google Scholar
  21. 21.
    O. I. Leipunskii, “On synthesized diamonds,” Usp. Khimii 8 (10), 1519–1534 (1939).Google Scholar
  22. 22.
    Yu. A. Litvin, Physicochemical Studies of Melting Deep-Seated Material (Nauka, Moscow, 1991) [in Russian].Google Scholar
  23. 23.
    Yu. A. Litvin, “Mantle hot spots and experiment up to 10 GPa: alkaline reactions, carbonatization of lithosphere, and new diamond-forming systems,” Geol. Geofiz. 39 (12), 1772–1779 (1998).Google Scholar
  24. 24.
    Yu. A. Litvin, “High-pressure mineralogy of diamond genesis,” Advances in High-Pressure Mineralogy, Ed by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 83–103 (2007).Google Scholar
  25. 25.
    Yu. A. Litvin, Genesis of Diamonds and Associated Phases (Springer, 2017).CrossRefGoogle Scholar
  26. 26.
    Yu. A. Litvin and A. V. Spivak, “Growth of diamond crystals at 5.5–8.5 GPa in the carbonate–carbon melts–solutions, the chemical analogues of natural diamond-forming environments,” Materialovedenie 84 (3), 27–34 (2004).Google Scholar
  27. 27.
    Yu. A. Litvin and V. A. Zharikov, “Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570°C,” Dokl. Earth Sci. 373 (5), 867–870 (2000).Google Scholar
  28. 28.
    Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Fundamentals of mantle carbonatite concept of diamond genesis,” Geochem. Int. 54(10), 839–857 (2016).CrossRefGoogle Scholar
  29. 29.
    Yu. A. Litvin, A. V. Bovkun, and V. K. Garanin, “Interaction of titanium minerals ant their melts with diamond-forming media (experiments at 7–8 GPa),” Geochem. Int. 56 (2), 148–161 (2018).CrossRefGoogle Scholar
  30. 30.
    Yu. Litvin, F. Pineau, and M. Javoy, “Carbon isotope fractionation during diamond synthesis in carbonatite-carbon melts of natural chemistry (experiments at 6.5–7.5 GPa),” AIG-6 – 6th International Symposium on Applied Isotope Geochemistry. Abstracts. Prague, Czech Republic, September 11–16, 2005 (Prague, 2005). Google Scholar
  31. 31.
    A. A. Marakushev, “Peridotite nodules in kimberlites as indicators of deep lithosphere structure,” in Reports of Russian Geologists at the 17 th Session of the International Geological Congress. Petrology (Nauka, Moscow, 1984), pp. 3–17.Google Scholar
  32. 32.
    Yu. D. Orlov, Mineralogy of Diamond (Nauka, Moscow, 1984) [in Russian].Google Scholar
  33. 33.
    L. L. Perchuk and I. D. Ryabchikov, “Experimental modelling of some hydrothermal reactions in kimberlitic magma at 12.5 kbar,” Proceedings of the First International Symposium on Hydrothermal Reactions, Ed by S. Somia (1983), pp. 259–279.Google Scholar
  34. 34.
    A. Reay and C. P. Wood,” Ilmenites from Kakanui, New Zeland,” Mineral. Mag. 39, 721–723 (1974).CrossRefGoogle Scholar
  35. 35.
    M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58 (2), 761–771 (1994).CrossRefGoogle Scholar
  36. 36.
    I. S. Sharygin, K. D. Litasov, A. F. Shatskiy, A. V. Golovin, E. Ohtani, and N. P. Pokhilenko, “Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melt and implications for mantle plumes,” Gondwana Res. 28, 1391–1414 (2015).CrossRefGoogle Scholar
  37. 37.
    A. F. Shatskiy, K. D. Litasov, and Yu. N. Palyanov, “Phase relations in carbonate systems at pressures and temperatrues of lithospheric mantle: review of experimental data,” Russ. Geol. Geophys. 56 (1–2), 149–187 (2015).CrossRefGoogle Scholar
  38. 38.
    D. A. Simonova, A. V. Spivak, and Yu. A. Litvin, P-T-boundary of the metastable graphite region in the diamond field in the experiment at 10–50 GPa, in Proceedings of All-Russian Seminar on Experimental Mineralogy, Petrology, and Geochemistry (VESEMPG-2016), Moscow, Russia, 2016 (GEOKHI, Moscow, 2016), pp. 20–21.Google Scholar
  39. 39.
    S. Yu. Skuzovatov, D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatsky, “Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia),” Russ. Geol. Geophys. 53 (11), 1197–1208 (2012).CrossRefGoogle Scholar
  40. 40.
    S. Yu. Skuzovatov, D. A. Zedgenizov, V. S. Shatsky, A. L. Ragozin, and K. E. Kuper, “Composition of Cloudy microinclusions in octahedral diamodns from the Omternatsional’naya kimberlite pipe (Yakutia),” Russ. Geol. Geophys. 52 (1), 85–96 (2011).CrossRefGoogle Scholar
  41. 41.
    S. Skuzovatov, D. Zedgenizov, D. Howell, and W. L. Griffin, “Various growth environments of cloudy diamonds from Malobotuobia kimberlite field (Siberian craton),” Lithos 265, 96–107 (2016).CrossRefGoogle Scholar
  42. 42.
    N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and Composition of the Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  43. 43.
    N. V. Sobolev, E. M. Galimov, and E. S. Efimova, “Carbon isotope composition of diamonds with crystalline inclusions,” Dokl. Akad. Nauk SSSR 249 (5), 1217–1220 (1984).Google Scholar
  44. 44.
    N. V. Sobolev, E. M. Galimov, K. B. Smith, E. S. Efimova, K. A. Maltsev, E. E. Hall, and L. V. Usova, “Comparative characteristics of morphology, inclusions, and carbon isotope composition of diamonds from alluvial deposits of the King George River and Argyle lamproite deposit (West Australia),” Geol. Geofiz., No. 12, 3–19 (1989).Google Scholar
  45. 45.
    V. S. Sobolev, “Conditions of formation of diamond deposits,” Geol. Geofiz., No. 1, 7–22 (1960).Google Scholar
  46. 46.
    N. A. Solopova, A. V. Spivak, Yu. A. Litvin, and L. S. Dubrovinsky, “Melting and breakdown of MgCO3 at high pressures,” Phys.Chem.Miner. 42, 73–81 (2014).CrossRefGoogle Scholar
  47. 47.
    A. V. Spivak, Yu. A. Litvin, S. V. Ovsyannikov, N. A. Dubrovinskaia, and L. S. Dubrovinsky, “Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43 GPa and 3900 K,” J. Solid State Chem. 191, 102–106 (2012).CrossRefGoogle Scholar
  48. 48.
    V. B. Vasilenko, L. G. Kuznetsova, A. V. Tolstov, and V. A. Minin, “Evaluating the diamondiferous potential of unaltered kimberlites by the population models of their composition,” Geochem. Int. 50 (12), 988–1006 (2012).CrossRefGoogle Scholar
  49. 49.
    A. Wang, J. D. Pasteris, H. O. A. Meyer, and M. L. Dele-Dubois, “Magnesite-bearing inclusions assemblage in natural diamond,” Earth Planet. Sci. Lett. 141, 293–300 (1996).CrossRefGoogle Scholar
  50. 50.
    J. R. Weidner,”Equilibria in the system Fe–C–O; Part I. Siderite-magnetite-carbon-vapor equilibrium from 500 to 10.000 bars,” Am. J. Sci. 272, 735–751 (1972).CrossRefGoogle Scholar
  51. 51.
    T. S. Woolsey, M. E. McCallum, S. A. Schumm, “Modelling of diatreme emplacement by fluidization,” Phys. Chem. Earth 9, 29–42 (1975).CrossRefGoogle Scholar
  52. 52.
    Yu. A. Litvin, A. V. Bovkun, N. A. Androsova and V. K. Garanin, “The system ilmenite–carbonatite–carbon in the origin of diamond: correlation between the titanium content and diamond potential of kimberlite,” Dokl. Earth Sci. 473 (1), 286–290 (2017).CrossRefGoogle Scholar
  53. 53.
    D. A. Zedgenizov, H. K. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68 (1), 61–73 (2004).CrossRefGoogle Scholar
  54. 54.
    D. A. Zedgenizov, S. Rege, W. L. Griffin, H. Kagi, and V. S. Shatsky, “Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis,” Chem. Geol. 240, 151–162 (2007).CrossRefGoogle Scholar
  55. 55.
    D. A. Zedgenizov, A. L. Ragozin, V. S. Shatsky, D. Araujo, W. L. Griffin, and H. Kagi, “Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia),” Lithos 112S, 638–647 (2009).CrossRefGoogle Scholar
  56. 56.
    D. A. Zedgenizov, A. L. Ragozin, V. S. Shatsky, D. Araujo, and W. L. Griffin, “Fibrous diamonds from the placers of the northeast Siberian craton: carbonate and silicate crystallization media,” Russ. Geol. Geophys. 52 (11), 1298–1309 (2011).CrossRefGoogle Scholar
  57. 57.
    D. A. Zedgenizov, N. P. Pokhilenko, and W. L. Griffin, “Carbonate–silicate composition of diamond-forming media of fibrous diamonds from the Snap Lake area (Canada),” Dokl. Earth Sci. 461 (3), 297–300 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Litvin
    • 1
    Email author
  • A. V. Kuzyura
    • 1
  • D. A. Varlamov
    • 1
  • A. V. Bovkun
    • 2
  • A. V. Spivak
    • 1
  • V. K. Garanin
    • 3
  1. 1.Korjinsky Institute of Experimental Mineralogy, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Geological Faculty, Moscow State UniversityMoscowRussia
  3. 3.Fersman Mineralogical Museum, Russian Academy of SciencesMoscowRussia

Personalised recommendations