Geochemistry International

, Volume 56, Issue 8, pp 751–765 | Cite as

Geochemical and Sr–Nd–Pb-Isotope Characteristics of Ice-Rafted Sediments of the Arctic Ocean

  • A. V. Maslov
  • V. P. Shevchenko
  • A. B. Kuznetsov
  • R. Stein


The paper discusses the geochemical and Sr–Nd–Pb-isotope data on ice-rafted sediments (IRS) from different areas of the Arctic Ocean. Samples were collected during the Cruise of R/V Polarstern between Spitsbergen and North Pole, Yermak Plateau, as well as in Fram Strait. It is shown that the studied IRS samples in terms of LaN/YbN and εNd values are close to the composition of suspended particulate matter (SPM) from the mouth parts of large rivers and rivers transporting the sedimentary erosion products. This also follows from their Th/Sc, Th/Co, La/Sc, La/Sm, Sc/Th ratios and Sc content and from the position of their data points in the Sc–Th/Sc, La/Sc–Th/Co, and La/Sm–Sc/Th diagrams between the average SPM compositions of the Ob and Lena rivers. The values of 207Pb/206Pb and εNd in IRS samples give grounds to suggest that the rock complexes of the European, North American, and Asian continental margins could be potential sources for this sedimentary material. In the 207Pb/206Pb–εNd diagram, the IRS samples from all three studied areas define a compact cluster and are mainly confined to the triangle with corners represented by the Mackenzie River, Okhotsk–Chukotka volcanic area, and Lena River, being closer to the latter. In the Sm/Nd–εNd diagram, IRS points also form a compact field, being located almost in the middle between the average SPM compositions of the Yenisei and Ob rivers, on the one hand, and Lena River, on the other. In all diagrams, IRS samples from the different West Arctic areas show no significant scatter. With allowance for the fact that sediments are not subjected to significant homogenization during ice rafting, sediments from all three areas were obtained from a common source. As seen from the position of IRS data points in the 87Sr/86Sr–εNd diagram, this source was the Asian continental margin.


ice-rafted sediments Arctic Ocean Sr Nd and Pb isotope composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Bayon, S. Toucanne, C. Skonieczny, L. Andre, S. Bermell, S. Cheron, B. Dennielou, J. Etoubleau, N. Freslon, T. Gauchery, Y. Germain, S. J. Jorry, G. Menot, L. Monin, E. Ponzevera, M.-L. Rouget, K. Tachikawa, and J. A. Barrat, “Rare earth elements and neodymium isotopes in world river sediments revisited,” Geochim. Cosmochim. Acta 170, 17–38 (2015).CrossRefGoogle Scholar
  2. E. Bazhenova, N. Fagel, and R. Stein, North American origin of “pink–white” layers at the Mendeleev Ridge (Arctic Ocean): new insights from lead and neodymium isotope composition of detrital sediment component,” Mar. Geol. 386, 44–55 (2017).CrossRefGoogle Scholar
  3. K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1–37 (1993).CrossRefGoogle Scholar
  4. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191, 305–327 (2002).CrossRefGoogle Scholar
  5. D. A. Darby, W. B. Myers, M. Jakobsson, and I. Rigor “Modern dirty sea ice characteristics and sources: the role of anchor ice,” J. Geophys. Res. 116, C09008 (2011).CrossRefGoogle Scholar
  6. D. Dethleff, “Entrainment and export of Laptev Sea ice sediments, Siberian Arctic,” J. Geophys. Res.–Oceans 110 (C07), 1–17 (2005).Google Scholar
  7. N. Fagel, C. Not, J. Gueibe, N. Mattielli, and E. Bazhenova, “Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge,” Quat. Sci. Rev. 92, 140–154 (2014).CrossRefGoogle Scholar
  8. I. I. Filatova, Perioceanic Volcanogenic Belts (Nedra, Moscow, 1988) [in Russian].Google Scholar
  9. J. Gaillardet, B. Dupré, and C. J. Allegre, “A global geochemical mass budget applied to the Congo basin rivers: erosion rates and continental crust composition,” Geochim. Cosmochim. Acta 59, 3469–3485 (1995).CrossRefGoogle Scholar
  10. Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments, Ed. by D. R. Lenz (Geological Ass. Canada. GEOtext, 2003).Google Scholar
  11. V. V. Gordeev and V. P. Shevchenko, “Chemical composition of suspended sediments in the Lena River and its mixing zone,” Berichte Polarforschung 176, 154–169 (1995).Google Scholar
  12. P. A. Gordienko and A. F. Laktionov, “Circulation and physics of the Arctic Basin waters,” Annals Int. Geophys. Year. Oceanography 46, 94–112 (1969).Google Scholar
  13. I. M. Gorokhov, N. N. Mel’nikov, A. B. Kuznetsov, G. V. Konstantinova, and T. L. Turchenko, “Sm–Nd systematics of fine-grained fractions of the Lower Cambrian blue clay in northern Estonia,” Lithol. Miner. Resour. 42 (5), 482–495 (2007).CrossRefGoogle Scholar
  14. L. Guo, I. Semiletov, O. Gustafsson, J. Ingri, P. Andersson, O. Dudarev, and D. White, “Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export,” Global Biogeochem. Cycles 18, GB1036 (2004). doi 10.1029/2003GB002087Google Scholar
  15. E. A. Gusev, A. B. Kuznetsov, E. E. Taldenkova, S. D. Nikolaev, A. Yu. Stepanova and E. S. Novikhin, “Past sedimentation rates and environments of the Mendeleev Rise inferred from Sr isotope and δ18O chemostratigraphy of its Late Cenozoic sediments,” Dokl. Earth Sci. 473, 354–358 (2017).CrossRefGoogle Scholar
  16. B. A. Haley, M. Frank, R. F. Spielhagen, and J. Fietzke, “Radiogenic isotope record of Arctic Ocean circulation and weathering inputs of the past 15 million years,” Paleoceanography 23, PA1S13 (2008). doi 10.1029/2007PA001486CrossRefGoogle Scholar
  17. S. R. Hemming, T. O. Vorren, and J. Kleman, “Provinciality of ice rafting in the North Atlantic: Application of 40Ar/39Ar dating of individual ice rafted hornblende grains,” Quat. Int. 95–96, 75–85 (2002).CrossRefGoogle Scholar
  18. R. M. Holmes, J. W. McClelland, B. J. Peterson, I. A. Shiklomanov, A. I. Shiklomanov, A. V. Zhulidov, V. V. Gordeev, and N. N. Bobrovitskaya, “A circumpolar perspective on fluvial sediment flux to the Arctic Ocean,” Global Biogeochem. Cycles 16 (4), GB1098 (2002). doi 10.1029/2001GB001849CrossRefGoogle Scholar
  19. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd evolution of chondrites and achondrites. II. Earth Planet. Sci. Letters 67 (2), 137–150 (1984).Google Scholar
  20. G. Krause and U. Schauer, “The expeditions ARKTIS XVI/1 and ARKTIS XVI/2 of the research vessel “Polarstern” in 2000,” Berichte Polar-Meeresforschung 389, (2001).Google Scholar
  21. A. B. Kuznetsov, M. T. Krupenin, G. V. Ovchinnikova, I.M. Gorokhov, A. V. Maslov, O. K. Kaurova, and R. Ellmies, “Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the Southern Urals: Sr isotopic characteristics and Pb–Pb Age,” Lithol. Miner. Resour. 40 (3), 195–215 (2005).CrossRefGoogle Scholar
  22. A. B. Kuznetsov, M. A. Semikhatov, and I. M. Gorokhov, “The Sr isotope composition of the World Ocean, marginal and inland seas: implications for the Sr isotope stratigraphy,” Stratigraphy. Geol. Correlation 20 (6), 501–515 (2012).CrossRefGoogle Scholar
  23. M. A. Levitan, D. Nürnberg, R. Stein, H. Kassens, M. Vasner, and E. S. Shelekhova, “Role of cryosols in the accumulation of the modern bottom sediments of the Arctic ocean,” Dokl. Akad. Nauk 344 (4), 506–509 (1995).Google Scholar
  24. M. A. Levitan, E. E. Musatov, and M. V. Burtman, “History of sedimentation on the Yermak Plateau during the recent 190 ka: Communication 2. Paleoceanographic interpretation,” Lithol. Miner. Resour. 37 (6), 493–502 (2002).CrossRefGoogle Scholar
  25. M. A. Levitan, Yu. A. Lavrushin, and R. Stein, “History of sedimentation in the Arctic ocean and subarctic Seas during the last 130 ka,” (GEOS, Moscow, 2007) [in Russian].Google Scholar
  26. A. P. Lisitzin, Glacial Sedimentation in the World Ocean (Nauka, Moscow, 1994) [in Russian].Google Scholar
  27. A. P. Lisitsyn, “The marginal filter of oceans,” Okeanology 34 (5), 735–747 (1995).Google Scholar
  28. A. P. Lisitzin, “Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes, Russ. Geol. Geophys. 51 (1), 12–47 (2010).CrossRefGoogle Scholar
  29. A. P. Lisitzin, and V. P. Shevchenko, “Glacial-marine sedimentation,” Encyclopedia of Marine Geosciences, Ed. by J. Harff, M. Meschede, S. Petersen, and J. Thiede, (Springer Science+Business Media, Dordrecht, 2016), pp. 288–294.CrossRefGoogle Scholar
  30. A. P. Lisitzin, E. G. Gurvich, V. N. Lukashin, E. M. Emelyanov, I. B. Zverinskaya, and A. D. Kurinov, Geochemistry of Hydrolyzate Elements (Nauka, Moscow, 1980) [in Russian].Google Scholar
  31. J.-M. Martin and M. Meybeck, “Elemental mass-balance of material carried by major world rivers,” Mar. Chem. 7, 173–206 (1979).CrossRefGoogle Scholar
  32. A. V. Maslov, M. T. Krupenin, and D. V. Kiseleva, “Lithogeochemistry of the fine-grained siliciclastic rocks of the Vendian Serebryanka Group of the Central Urals,” Geochem. Int. 49 (10), 974–1001 (2011).CrossRefGoogle Scholar
  33. A. V. Maslov, V. P. Shevchenko, A. B. Kuznetsov, R. Stein, and S Gerland, “Some geochemical features of icerafted edimentary material in West Arctica, in Geology of Seas and Oceans. Proceedings of 12th International Conference (School) on Marine Geology (IO RAN, Moscow, 2017), Vol. 2, pp. 70–74.Google Scholar
  34. N. P. Morozov, G. N. Baturin, V. V. Gordeev, and E. G. Gurvich, “Composition of suspended particulate matter and sediments in the mouth areas of the Severnaya Dvina, Mezen, Pechora, and Ob rivers,” Gidrokhim. Mater. 60, 60–73 (1974).Google Scholar
  35. D. Nürnberg, I. Wollenburg, D. Dethleff, H. Kassens, T. Letzig, E. Reimnitz, and J. Thiede, “Sediments in Arctic sea ice: Implications for entrainment, transport and release,” Mar. Geol. 119, 185–214 (1994).CrossRefGoogle Scholar
  36. G. V. Ovchinnikova, A. B. Kuznetsov, V. A. Melezhik, I. M. Gorokhov, I. M. Vasil’eva, and B. M. Gorokhovskii, “Pb–Pb age of Jatulian carbonate rocks: the Tulomozero Formation of southeast Karelia,” Stratigraphy. Geol. Correlation 15 (4), 359–372 (2007).CrossRefGoogle Scholar
  37. S. L. Pfirman, R. Colony, D. Nürnberg, H. Eicken, and I. Rigor, “Reconstructing the origin and trajectory of drifting Arctic sea ice,” J. Geophys. Res.–Oceans 102 (C6), 12575–12586 (1997).CrossRefGoogle Scholar
  38. V. Rachold, “Major, trace, rare earth element geochemistry of suspended particulate material of east Siberian rivers draining to the Arctic Ocean,” Land-Ocean Systems in the Siberian Arctic, Dynamics and History, Ed. by H. Kassens, H. A. Bauch, I. A. Dmitrenko, H. Eicken, H.-W. Hubberten, M. Melles, J. Thiede, and L. A. Timokhov (Springer, New York, 1999), pp. 199–222.CrossRefGoogle Scholar
  39. V. Rachold, A. Alabyan, H.-W. Hubberten, V. N. Korotaev, and A. A. Zaitsev, “Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River,” Polar Res. 15 (2), 183–196 (1996).Google Scholar
  40. V. Rachold, H. Eicken, V. V. Gordeev, M. N. Grigoriev, H.-W. Hubberten, A. P. Lisitzin, V. P. Shevchenko, and L. Schirrmeister, “Modern terrigenous organic carbon input to the Arctic Ocean,” The Arctic Ocean Organic Carbon Cycle: Present and Past, Ed. by R. Stein and R. W. Macdonald (Springer, Berlin–Heidelberg–New York, 2004), pp. 33–55.CrossRefGoogle Scholar
  41. V. S. Savenko, Chemical Composition of Suspended Particulate Matters of the World Ocean (GEOS, Moscow, 2006) [in Russian].Google Scholar
  42. V. S. Savenko, O. S. Pokrovskii, B. Dupré, and G. N. Baturin, “Chemical composition of suspended material in large rivers of Russia and adjacent countries,” Dokl. Earth Sci. 398(1), 938–943 (2004).Google Scholar
  43. W. Schmitt, “Application of the Sm–Nd isotope system to the Late Quaternary paleoceanography of the Yermak Plateau (Arctic Ocean),” Dissertation zur erlangung des doktorgrades. (Ludwig-Maximilians-universität, München, 2007).Google Scholar
  44. “Scientific cruise report of the Arctic expedition ARK-XX/3 of RV “Polarstern” in 2004: Fram Strait, Yermak Plateau and East Greenland continental margin,” Ed. by R. Stein, Berichte Polar- und Meeresforschung 517, (2005).Google Scholar
  45. M. Sharma, A. R. Basu, and G. V. Nesterenko, “Temporal Sr-, Nd- and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics,” Earth Planet. Sci. Lett. 113, 365–381 (1992).CrossRefGoogle Scholar
  46. V. P. Shevchenko, O. V. Severina, N. G. Maiorova, and G. V. Ivanov, “Quantitative distribution and composition of suspended matter in the Ob and Yenisei estuaries,” Vestn. Mosk. Univ., Ser. 4. Geol., No. 3, 81–86 (1996).Google Scholar
  47. V. P. Shevchenko, A. V. Maslov, A. P. Lisitzin, A. N. Novigatsky, and R. Stein, “Element composition of the Aarctic ice-rafted sedimentary material,” in Geography of Polar Regions (Kodeks, Moscow, 2016), pp. 390–413 [in Russian].Google Scholar
  48. V. P. Shevchenko, A. V. Maslov, A. P.Lisitzin, A. N. Novigatsky, and R. Stein, “Cr, Co, and rare-earth systematic in ice-rafted sedimentary material from the northern Beaufort Gyre,” Litosfera 17 (3), 59–70 (2017a).CrossRefGoogle Scholar
  49. V. P. Shevchenko, A. V. Maslov and R. Stein, “Distribution of some rare and trace elements in ice-rafted sediments in the Yermak Plateau Area, the Arctic Ocean,” Oceanology 57 (6), 855–863 (2017b).CrossRefGoogle Scholar
  50. S. R. Taylor and S. M. McLennan, Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985).Google Scholar
  51. J. Thiede and the Shipboard Scientific Party, “POLARSTERN ARKTIS XVII/2 cruise report: AMORE 2001 (Arctic Mid-Ocean Expedition),” Berichte Polar- Meeresforschung 421, (2002).Google Scholar
  52. T. Tütken, A. Eisenhauer, B. Wiegand, and B. T. Hansen, “Glacial-interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet,” Mar. Geol. 182, 351–372 (2002).CrossRefGoogle Scholar
  53. C. Vogt, J. Knies, R. F. Spielhagen, and R. Stein, “Detailed mineralogical evidence for two nearly identical glacial/ interglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years,” Global Planet. Change 31, 23–44 (2001).CrossRefGoogle Scholar
  54. B. L. Winter, C. M. Johnson, and D. L. Clark, “Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: Implications for sediment provenance and the source of trace metals in seawater,” Geochim. Cosmochim. Acta 61, 4181–4200 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Maslov
    • 1
  • V. P. Shevchenko
    • 2
  • A. B. Kuznetsov
    • 3
  • R. Stein
    • 4
  1. 1.Zavaritskii Institute of Geology and Geochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Alfred Wegener Institute Helmholtz-Zentrum fur Polar-und MeeresforschungBremerhavenGermany

Personalised recommendations