Advertisement

Geochemistry International

, Volume 56, Issue 8, pp 766–783 | Cite as

In situ LA-ICPMS Isotopic and Geochronological Studies on Carbonatites and Phoscorites from the Guli Massif, Maymecha-Kotuy, Polar Siberia

  • Mahdi Ghobadi
  • Axel Gerdes
  • Lia Kogarko
  • Heidi Hoefer
  • Gerhard Brey
Article

Abstract

In this study we present a fresh isotopic data, as well as U–Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308–0.70314 and 0.70306–0.70313, respectively; and 0.70310–0.70325 and 0.70314–0.70327, for the pyrochlores and apatites from the carbonatites, respectively.

Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield εNd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; εNd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ εNd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios.

In situ U–Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. B. Bayanova, “Baddeleyite: A promising geochronometer for alkaline and basic magmatism,” Petrology 14 (2), 187–200 (2006).CrossRefGoogle Scholar
  2. K. Bell, “Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks–A brief review,” J. Petrol., 39, 1987–1996 (1998).CrossRefGoogle Scholar
  3. K. Bell and A. Simonetti, “Source of parental melts to carbonatites–critical isotopic constraints,” Mineral. Petrol. 98 (1–4), 77–89 (2009).Google Scholar
  4. A. Bouvier, J. D. Vervoort and P. J. Patchett, “The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett., 273, 48–57 (2008).CrossRefGoogle Scholar
  5. G. P. Brey and T. Köhler, “Geothermobarometry in fourphase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers,” J. Petrol. 31(6), 1353–1378 (1990).CrossRefGoogle Scholar
  6. G. P. Brey, V. K. Bulatov, A. V. Girnis, and Y. Lahaye, “Experimental melting of carbonated peridotite at 6–10 GPa,” J. Petrol., 49(4), 797–821 (2008).CrossRefGoogle Scholar
  7. G. P. Brey, W. R. Brice, D. J. Ellis, D. H. Green, K. L. Harris, and I. D. Ryabchikov, “Pyroxene-carbonate reactions in the upper mantle,” Earth Planet. Sci. Lett., 62(1), 63–74 (1983).CrossRefGoogle Scholar
  8. G. Caro, B. Bourdon, J. L. Birck, and S. Moorbath, “High precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth’s mantle,” Geochim. Cosmochim. Acta 70 (1), 164–191 (2006).CrossRefGoogle Scholar
  9. B. G. Dalrymple, G. K. Czamanske, V. A. Fedorenko, O. N. Simonov, M. A. Lanphere, and A. P. Likhachev, A reconnaissance 40Ar–39Ar geochronological study of ore-bearing and related rocks, Siberian Russia,” Geochim. Cosmochim. Acta, 59, 2071–2083 (1995).CrossRefGoogle Scholar
  10. K. Deckart, H. Bertrand, and J. P. Liégeois, “Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea,” Lithos, 82 (3–4), 289–314 (2005).CrossRefGoogle Scholar
  11. P. Dèzes, S. M. Schmid, and P. A. Ziegler, “Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere,” Tectonophysics, 389(1–2), 1–33 (2004).CrossRefGoogle Scholar
  12. G. Dobosi, H. Downes, A. Embey Isztin, and G. A. Jenner, Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary),” Neues Jahrb. Mineral.-Abh. 178 (3), 217–237 (2003).Google Scholar
  13. L. S. Egorov, Ijolite-Carbonatite Plutonism, (Nedra, Leningrad, 1991). [in Russian].Google Scholar
  14. G. L. Foster, and D. Vance, “In situ Nd isotopic analysis of geological materials by laser ablation MC ICP-MS,” J. Analyt. Atom. Spectrom. 21 (3), 288–296 (2006).CrossRefGoogle Scholar
  15. A. Gerdes and A. Zeh, “Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany,” Earth Planet. Sci. Lett. 249 (1–2), 47–61 (2006).CrossRefGoogle Scholar
  16. A. Gerdes and A. Zeh, “Zircon formation versus zircon alteration–new insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt,” Chem. Geol. 261 (3), 230–243 (2009).CrossRefGoogle Scholar
  17. M. Ghobadi, A. Gerdes, L. N. Kogarko, and G. P. Brey, “New data on the composition and hafnium isotopes of zircons from carbonatites of the Khibiny Massif,” Dokl. Earth Sci. 446 (1), 1083–1085 (2012).CrossRefGoogle Scholar
  18. A. Glahn and M. Granet, “3-D structure of the lithosphere beneath the southern Rhine Graben area,” Tectonophysics, 208, 149–158 (1992).CrossRefGoogle Scholar
  19. A. Goolaerts, N. Mattielli, J. de Jong, D. Weis, and J. S. Scoates, “Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS,” Chem. Geol. 206 (1), 1–9 (2004).CrossRefGoogle Scholar
  20. T. H. Green, J. Adam, and S. H. Siel, “Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism,” Mineral. Petrol. 46 (3), 179–184 (1992).CrossRefGoogle Scholar
  21. D. L. Hamilton, P. Bedson, and J. Esson, “The behaviour of trace elements in the evolution of carbonatites,” in Carbonatites: Genesis and Evolution, Ed. by K. Bell (Unwin Hyman, Boston, 1989), pp. 405–427Google Scholar
  22. L. M. Heaman, “The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards,” Chem. Geol. 261 (1–2), 43–52 (2009).CrossRefGoogle Scholar
  23. A. W. Hofmann, “Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust,” Earth Planet. Sci. Lett. 90 (3), 297–314 (1988).CrossRefGoogle Scholar
  24. A. W. Hofmann, “Mantle geochemistry: the message from oceanic volcanism,” Nature, 385 (6613), 219–229 (1997).CrossRefGoogle Scholar
  25. I. Hornig-Kjarsgaard, “Rare earth elements in sövitic carbonatites and their mineral phases,” J. Petrol., 39 (11–12), 2105–2121 (1998).CrossRefGoogle Scholar
  26. H. W. Hubberten, K. Katz-Lehnert, and J. Keller, “Carbon and oxygen isotope investigations in carbonatites and related rocks from the Kaiserstuhl, Germany,” Chem. Geol. 70 (3), 257–274 (1988).CrossRefGoogle Scholar
  27. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd isotopic evolution of chondrites and achondrites, II,” Earth Planet. Sci. Lett. 67 (2), 137–150 (1984).CrossRefGoogle Scholar
  28. S. L. Kamo G. K. Czamanske, and T. E. Krogh, “A minimum U-Pb age for Siberian flood-basalt volcanism,” Geochim. Cosmochim. Acta 60, 3505–3511 (1996)CrossRefGoogle Scholar
  29. L. N. Kogarko, “Geochemistry of radioactive elements in the rocks of the Guli Massif, Polar Siberia,” Geochem. Int. 50 (9), 719–725 (2012).CrossRefGoogle Scholar
  30. L. N. Kogarko, and A. R. Woolley, Alkaline Rocks and Carbonatites of the World: Former USSR (Chapman & Hall, 1996).Google Scholar
  31. L. N. Kogarko and I. D. Ryabchikov, “Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia,” J. Asian Earth Sci. 18 (2), 195–203 (2000).CrossRefGoogle Scholar
  32. L. N. Kogarko and R. E. Zartman, “A Pb isotope investigation of the Guli massif, Maymecha-Kotuy alkalineultramafic complex, Siberian flood basalt province, Polar Siberia,” Mineral. Petrol. 89 (1–2), 113–132 (2006).Google Scholar
  33. L. N. Kogarko, and R. E. Zartman, “New data on the age of the Guli intrusion and implications for the relationships between alkaline magmatism in the Maymecha-Kotuy province and the Siberian superplume: U–Th–Pb isotopic systematics,” Geochem. Int. 49 (5), 439–448 (2011).CrossRefGoogle Scholar
  34. L. N. Kogarko, M. Henderson, and K. Foland, “The Guli ultrabasic alkaline massif in Polar Siberia: evolution and isotope sources,” Dokl. Earth Sci., 364, 88–90 (1999).Google Scholar
  35. L. N. Kogarko, P. Suddaby, and P. Watkins, “Geochemical evolution of carbonatite melts in Polar Siberia,” Geochem. Int. 35 (2), 113–118 (1997).Google Scholar
  36. L. N. Kogarko, Y. Lahaye, and G. P. Brey, “Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics,” Mineral. Petrol. 98 (1), 197–208 (2010).CrossRefGoogle Scholar
  37. L. N. Kogarko, D. A. Plant, C. M. B. Henderson, and B. A. Kjarsgaard, “Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Cacarbonatite, polar Siberia,” Contrib. Mineral. Petrol. 109 (1), 124–129 (1991).CrossRefGoogle Scholar
  38. R. W. Le Maitre, A. Streckeisen, B. Zanettin, M. J. Le Bas, B. Bonin, and P. Bateman, Igneous Rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (Cambridge University Press, 2002).CrossRefGoogle Scholar
  39. K. R. Ludwig, “User’s manual for ISOPLOT 3.00: a geochronological toolkit for Microsoft Excel,” Sp. Publ. No. 4. Berkeley Geochronol. Center, 71 (2003).Google Scholar
  40. K. N. Malitch, I. Yu Badaninab, and A. I. Kostoyanov, “Initial Os isotopic composition of Os-Ir-Ru alloys from ultramafic massifs of the Polar Siberia,” Dokl. Earth Sci. 440, 1343–1348 (2011).CrossRefGoogle Scholar
  41. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  42. R. H. Mitchell, “Composition of perovskite in kimberlite,” Am. Mineral. 57 (11–12), 1748–1753 (1972).Google Scholar
  43. R. H. Mitchell, “Carbonatites and carbonatites and carbonatites,” Can. Mineral. 43, 2049–2068 (2005).CrossRefGoogle Scholar
  44. P. Möller, G. Morteani, and F. Schley, “Discussion of REE distribution patterns of carbonatites and alkalic rocks,” Lithos, 13 (2), 171–179 (1980).CrossRefGoogle Scholar
  45. M. L. A. Morel, O. Nebel, Y. J. Nebel-Jacobsen, J. S. Miller, and P. Z. Vroon, “Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS,” Chem. Geol. 255 (1), 231–235 (2008).CrossRefGoogle Scholar
  46. D. R. Nelson, A. R. Chivas, B. W. Chappell, and M. T. McCulloch, “Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources,” Geochim. Cosmochim. Acta, 52 (1), 1–17 (1988).CrossRefGoogle Scholar
  47. M. L. Pascal, A. Di Muro, M. Fonteilles, and C. Principe, “Zirconolite, calzirtite, baddeleyite, betafite, geikielite and qandilite in skarn ejecta from Vesuvius-inferences for the magma-wallrock interactions,” Geophys. Res. Abstr. 10, 06674 (2008).Google Scholar
  48. P. J. Patchett, O. Kouvo, C. E. Hedge, and M. Tatsumoto, “Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes,” Contrib. Mineral. Petrol. 78 (3), 279–297 (1982).CrossRefGoogle Scholar
  49. P. J. Patchett and M. Tatsumoto, “Hafnium isotope variations in oceanic basalts,” Geophys. Res. Lett. 7 (12), 1077–1080 (1980).CrossRefGoogle Scholar
  50. N. J. Pearce, W. T. Perkins, J. A. Westgate, M. P. Gorton, S. E. Jackson, C. R. Neal, and S. P. Chenery, “A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials,” Geostand. Geoanalytical Res., 21 (1), 115–144 (1997).CrossRefGoogle Scholar
  51. F. C. Ramos, J. A. Wolff, and D. L. Tollstrup, “Measuring 87Sr/ 86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS,” Chem. Geol. 211 (1), 135–158 (2004).CrossRefGoogle Scholar
  52. K. Rankenburg, Megacrysts in Volcanic Rocks of the Cameroon Line: Constraints on Magma Genesis and Contamination, Doctoral Dissertation, (Johann Wolfgang Universität, 2002).Google Scholar
  53. J. S. Ray, “Radiogenic isotopic ratio variations in carbonatites and associated alkaline silicate rocks: role of crustal assimilation,” J. Petrol. 50 (10), 1955–1971 (2009).CrossRefGoogle Scholar
  54. D. Rousset, R. Bayer, D. Guillon, and J. B. Edel, “Structure of the southern Rhine Graben from gravity and reflection seismic data (ECORS-DEKORP program),” Tectonophysics, 221 (2), 135–153 (1993).CrossRefGoogle Scholar
  55. V. J. Salters and W. M. White, “Hf isotope constraints on mantle evolution,” Chem. Geol. 145 (3), 447–460 (1998).CrossRefGoogle Scholar
  56. H. Schleicher, A. Baumann, and J. Keller, “Pb isotopic systematics of alkaline volcanic rocks and carbonatites from the Kaiserstuhl, upper Rhine rift valley, FRG,” Chem. Geol. 93 (3), 231–243 (1991).CrossRefGoogle Scholar
  57. H. Schleicher, J. Keller, and U. Kramm, “Isotope studies on alkaline volcanics and carbonatites from the Kaiserstuhl, Federal-Republic-of-Germany,” Lithos 26, 21–35 (1990).CrossRefGoogle Scholar
  58. M. Schwarz and A. Henk, “Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modeling,” Int. J. Earth Sci. 94 (4), 732–750 (2005).CrossRefGoogle Scholar
  59. A. Simonetti and C. R. Neal, “In-situ chemical, U–Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): evidence for multistage alkaline magmatic activity beneath the Ontong Java Plateau,” Earth Planet. Sci. Lett., 295 (1), 251–261 (2010).CrossRefGoogle Scholar
  60. A. Simonetti, L. M. Heaman, T. Chacko, and N. R. Banerjee, “In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS,” Int. J. Mass Spectrom. 253 (1), 87–97 (2006).CrossRefGoogle Scholar
  61. A. Simonetti, S. L. Goldstein, S. S. Schmidberger, and S. G. Viladkar, “Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes–inferences for mantle sources and plume–lithosphere interaction,” J. Petrol. 39 (11–12), 1847–1864 (1998).CrossRefGoogle Scholar
  62. A. Stracke, A. W. Hofmann, and S. R. Hart, “FOZO, HIMU, and the rest of the mantle zoo,” Geochem. Geophys. Geosyst. 6 (5), Q05007 (2005).CrossRefGoogle Scholar
  63. S. S. Sun, and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc., London, Sp. Publ. 42 (1), 313–345 (1989).CrossRefGoogle Scholar
  64. J. F. Sun, J. H. Yang, F. Y. Wu, X. H. Li, Y. H. Yang, L. W. Xie, and S. A. Wilde, “Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: in situ U–Pb age and Sr-, Nd-, Hf- and O-isotope evidence,” Lithos 120 (3), 421–438 (2010).CrossRefGoogle Scholar
  65. P. J. Sylvester, Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (Mineralogical Ass. Canada, 2008).Google Scholar
  66. S. Tappe, D. G. Pearson, G. Nowell, T. Nielsen, P. Milstead, and K. Muehlenbachs, “A fresh isotopic look at land kimberlites: cratonic mantle lithosphere imprint on deep source signal,” Earth Planet. Sci. Lett., 305 (1), 235–248 (2011).CrossRefGoogle Scholar
  67. M. F. Thirlwall, “Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis,” Chem. Geol.: Isotope Geosci. Sec. 94 (2), 85–104 (1991).CrossRefGoogle Scholar
  68. J. D. Vervoort and J. Blichert-Toft, “Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time,” Geochim. Cosmochim. Acta, 63 (3), 533–556 (1999).CrossRefGoogle Scholar
  69. P. Z. Vroon, B. Van Der Wagt, J. M. Koornneef, and G. R. Davies, “Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS. Analytical and bioanalytical chemistry,” 390 (2), 465–476 (2008).CrossRefGoogle Scholar
  70. G. J. Wasserburg, S. B. Jacousen, D. J. DePaolo, M. T. McCulloch, and T. Wen, “Precise determination of Sm-Nd ratios, Sm and Nd isotopic abundances in standard solutions,” Geochim. Cosmochim. Acta 45 (12), 2311–2323 (1981).CrossRefGoogle Scholar
  71. A. R. Woolley and D. R. C. Kempe, “Carbonatites: nomenclature, average chemical compositions, and element distribution,” in Carbonatites: Genesis and Evolution, Ed. by K. Bell (Unwin Hyman, London, 1989), pp. 1–14.Google Scholar
  72. F. Y. Wu, Y. H. Yang, L. W. Xie, J. H. Yang, and P. Xu, “Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology,” Chem. Geol. 234 (1), 105–126 (2006).CrossRefGoogle Scholar
  73. F. Y. Wu, Y. H. Yang, R. H. Mitchell, F. Bellatreccia, Q. L. Li, and Z. F. Zhao, “In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite,” Chem. Geol. 277 (1), 178–195 (2010).CrossRefGoogle Scholar
  74. F. Y. Wu, Y. H. Yang, R. H. Mitchell, Q. L. Li, J. H. Yang, and Y. B. Zhang, “In situ U–Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada,” Lithos 115 (1), 205–222 (2010).CrossRefGoogle Scholar
  75. F. Y. Wu, R. H. Mitchell, Q. L. Li, J. Sun, C. Z. Liu, and Y. H. Yang, “In situ U-Pb age determination and Sr‒Nd isotopic analysis of perovskite from the Premier (Cullinan) kimberlite, South Africa,” Chem. Geol. (in press).Google Scholar
  76. L. Xie, Y. Zhang, H. Zhang, J. Sun, and F. Y. Wu, “In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite,” Sci. Bull. 53 (10), 1565–1573 (2008).CrossRefGoogle Scholar
  77. C. Xu, H. Zhang, Z. Huang, C. Liu, L. Qi, and W. Li, and T. Guan, “Genesis of the carbonatite: syenite complex and REE deposit at Maoniuping, Sichuan Province, China: evidence from Pb isotope geochemistry,” Geochem. J. Japan, 38 (1), 67–76 (2004).CrossRefGoogle Scholar
  78. C. Xu, J. Kynicky, and A. R. Chakhmouradian, I. H. Campbell, and C. M. Allen, “Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China,” Lithos, 118 (1), 145–155 (2010).CrossRefGoogle Scholar
  79. Y. H. Yang, F. Y. Wu, S. A. Wilde, X. M. Liu, Y. B. Zhang, L. W. Xie, and J. H. Yang, “In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton,” Chem. Geol. 264 (1), 24–42 (2009).CrossRefGoogle Scholar
  80. J. Zhou and X. Li, “Short note: GeoPlot: An Excel VBA program for geochemical data plotting,” Comp. Geosci. 32 (4), 554–560 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Mahdi Ghobadi
    • 1
    • 2
  • Axel Gerdes
    • 2
  • Lia Kogarko
    • 3
  • Heidi Hoefer
    • 2
  • Gerhard Brey
    • 2
  1. 1.Activation Laboratories, Ltd., AncasterOntarioCanada
  2. 2.Institute of GeoscienceGoethe UniversityFrankfurt am MainGermany
  3. 3.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations